利用 SWOT 卫星数据加强热带潮汐河流环境中的排水量估算

Francisco Rodrigues do Amaral, Thierry Pellarin, Tin Nguyen Trung, Tran Anh Tu, Nicolas Gratiot
{"title":"利用 SWOT 卫星数据加强热带潮汐河流环境中的排水量估算","authors":"Francisco Rodrigues do Amaral, Thierry Pellarin, Tin Nguyen Trung, Tran Anh Tu, Nicolas Gratiot","doi":"10.1371/journal.pwat.0000226","DOIUrl":null,"url":null,"abstract":"The Surface Water and Ocean Topography (SWOT) mission aims to provide essential data on river width, height and slope in order to estimate worldwide river discharge accurately. This mission offers a powerful tool for monitoring river discharge in dynamic coastal areas, like the Saigon-Dongnai estuary in Southern Vietnam. However, estimating discharge of tidally-influenced rivers using SWOT measurements can be challenging when hydraulic variables have the same order of magnitude as SWOT measurement errors. In this paper we present a methodology to enhance discharge estimation accuracy from SWOT measurements based on simulated SWOT products at the 200 meter node resolution and varying river reach size. We assess measurement error variability and its impact on discharge estimation by employing a Monte Carlo analysis. Our approach significantly improved discharge estimation in the Saigon tidal river, reducing RMSE from 1400 m3/s to 180 m3/s and increasing R² from 0.31 to 0.95. Notably, the percentage of Monte Carlo particles meeting the 30% rRMSE threshold rose from 0% to 79%. This study underscores the feasibility of obtaining reliable discharge estimates from SWOT data in complex coastal areas where hydraulic variables are of the same order of magnitude as SWOT errors. Additionally, the proposed methodology to improve discharge estimation from SWOT measurements is widely adaptable as it can be applied to similar regions and can be combined with any discharge estimation method.","PeriodicalId":93672,"journal":{"name":"PLOS water","volume":"225 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing discharge estimation from SWOT satellite data in a tropical tidal river environment\",\"authors\":\"Francisco Rodrigues do Amaral, Thierry Pellarin, Tin Nguyen Trung, Tran Anh Tu, Nicolas Gratiot\",\"doi\":\"10.1371/journal.pwat.0000226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Surface Water and Ocean Topography (SWOT) mission aims to provide essential data on river width, height and slope in order to estimate worldwide river discharge accurately. This mission offers a powerful tool for monitoring river discharge in dynamic coastal areas, like the Saigon-Dongnai estuary in Southern Vietnam. However, estimating discharge of tidally-influenced rivers using SWOT measurements can be challenging when hydraulic variables have the same order of magnitude as SWOT measurement errors. In this paper we present a methodology to enhance discharge estimation accuracy from SWOT measurements based on simulated SWOT products at the 200 meter node resolution and varying river reach size. We assess measurement error variability and its impact on discharge estimation by employing a Monte Carlo analysis. Our approach significantly improved discharge estimation in the Saigon tidal river, reducing RMSE from 1400 m3/s to 180 m3/s and increasing R² from 0.31 to 0.95. Notably, the percentage of Monte Carlo particles meeting the 30% rRMSE threshold rose from 0% to 79%. This study underscores the feasibility of obtaining reliable discharge estimates from SWOT data in complex coastal areas where hydraulic variables are of the same order of magnitude as SWOT errors. Additionally, the proposed methodology to improve discharge estimation from SWOT measurements is widely adaptable as it can be applied to similar regions and can be combined with any discharge estimation method.\",\"PeriodicalId\":93672,\"journal\":{\"name\":\"PLOS water\",\"volume\":\"225 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLOS water\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pwat.0000226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLOS water","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1371/journal.pwat.0000226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

地表水和海洋地形(SWOT)任务旨在提供有关河流宽度、高度和坡度的重要数据,以便准确估算全球河流的排水量。这项任务为监测动态沿海地区(如越南南部的西贡-东奈河口)的河流排水量提供了强有力的工具。然而,当水力变量的数量级与 SWOT 测量误差相同时,利用 SWOT 测量来估算受潮汐影响河流的排泄量就会面临挑战。在本文中,我们介绍了一种提高 SWOT 测量排水量估算精度的方法,该方法基于 200 米节点分辨率和不同河段大小的模拟 SWOT 产品。我们通过蒙特卡罗分析评估了测量误差的可变性及其对排泄量估算的影响。我们的方法明显改善了西贡潮汐河的排水量估算,RMSE 从 1400 立方米/秒降低到 180 立方米/秒,R² 从 0.31 提高到 0.95。值得注意的是,达到 30% RMSE 临界值的蒙特卡罗粒子的百分比从 0% 上升到 79%。这项研究表明,在水力变量与 SWOT 误差数量级相同的复杂沿岸地区,从 SWOT 数据中获得可靠的排泄量估算值是可行的。此外,所提出的改进 SWOT 测量排泄量估算的方法具有广泛的适应性,可应用于类似地区,并可与任何排泄量估算方法相结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing discharge estimation from SWOT satellite data in a tropical tidal river environment
The Surface Water and Ocean Topography (SWOT) mission aims to provide essential data on river width, height and slope in order to estimate worldwide river discharge accurately. This mission offers a powerful tool for monitoring river discharge in dynamic coastal areas, like the Saigon-Dongnai estuary in Southern Vietnam. However, estimating discharge of tidally-influenced rivers using SWOT measurements can be challenging when hydraulic variables have the same order of magnitude as SWOT measurement errors. In this paper we present a methodology to enhance discharge estimation accuracy from SWOT measurements based on simulated SWOT products at the 200 meter node resolution and varying river reach size. We assess measurement error variability and its impact on discharge estimation by employing a Monte Carlo analysis. Our approach significantly improved discharge estimation in the Saigon tidal river, reducing RMSE from 1400 m3/s to 180 m3/s and increasing R² from 0.31 to 0.95. Notably, the percentage of Monte Carlo particles meeting the 30% rRMSE threshold rose from 0% to 79%. This study underscores the feasibility of obtaining reliable discharge estimates from SWOT data in complex coastal areas where hydraulic variables are of the same order of magnitude as SWOT errors. Additionally, the proposed methodology to improve discharge estimation from SWOT measurements is widely adaptable as it can be applied to similar regions and can be combined with any discharge estimation method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessing state partner use of the Model Aquatic Health Code (MAHC): A cross comparison of five states with varying degrees of self-reported adoption status Virtual water flows in a real world Optimizing machine learning for water safety: A comparative analysis with dimensionality reduction and classifier performance in potability prediction Assessing the sustained effects of a water filter intervention: A 30-month longitudinal study in Rwamagana, Rwanda 222 nm causes greater protein damage and repair inhibition of E. coli than 254 nm for water disinfection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1