{"title":"二十世纪和二十一世纪化学研究的物理化学模型","authors":"Josep M. Ribó*, and , David Hochberg*, ","doi":"10.1021/acsphyschemau.3c00057","DOIUrl":null,"url":null,"abstract":"<p >Thermodynamic hypotheses and models are the touchstone for chemical results, but the actual models based on time-invariance, which have performed efficiently in the development of chemistry, are nowadays invalid for the interpretation of the behavior of complex systems exhibiting nonlinear kinetics and with matter and energy exchange flows with the surroundings. Such fields of research will necessarily foment and drive the use of thermodynamic models based on the description of irreversibility at the macroscopic level, instead of the current models which are strongly anchored in microreversibility.</p>","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":"4 2","pages":"122–134"},"PeriodicalIF":3.7000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsphyschemau.3c00057","citationCount":"0","resultStr":"{\"title\":\"Physical Chemistry Models for Chemical Research in the XXth and XXIst Centuries\",\"authors\":\"Josep M. Ribó*, and , David Hochberg*, \",\"doi\":\"10.1021/acsphyschemau.3c00057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Thermodynamic hypotheses and models are the touchstone for chemical results, but the actual models based on time-invariance, which have performed efficiently in the development of chemistry, are nowadays invalid for the interpretation of the behavior of complex systems exhibiting nonlinear kinetics and with matter and energy exchange flows with the surroundings. Such fields of research will necessarily foment and drive the use of thermodynamic models based on the description of irreversibility at the macroscopic level, instead of the current models which are strongly anchored in microreversibility.</p>\",\"PeriodicalId\":29796,\"journal\":{\"name\":\"ACS Physical Chemistry Au\",\"volume\":\"4 2\",\"pages\":\"122–134\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsphyschemau.3c00057\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Physical Chemistry Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsphyschemau.3c00057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Physical Chemistry Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsphyschemau.3c00057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Physical Chemistry Models for Chemical Research in the XXth and XXIst Centuries
Thermodynamic hypotheses and models are the touchstone for chemical results, but the actual models based on time-invariance, which have performed efficiently in the development of chemistry, are nowadays invalid for the interpretation of the behavior of complex systems exhibiting nonlinear kinetics and with matter and energy exchange flows with the surroundings. Such fields of research will necessarily foment and drive the use of thermodynamic models based on the description of irreversibility at the macroscopic level, instead of the current models which are strongly anchored in microreversibility.
期刊介绍:
ACS Physical Chemistry Au is an open access journal which publishes original fundamental and applied research on all aspects of physical chemistry. The journal publishes new and original experimental computational and theoretical research of interest to physical chemists biophysical chemists chemical physicists physicists material scientists and engineers. An essential criterion for acceptance is that the manuscript provides new physical insight or develops new tools and methods of general interest. Some major topical areas include:Molecules Clusters and Aerosols; Biophysics Biomaterials Liquids and Soft Matter; Energy Materials and Catalysis