Surendhar Sakthivel, Sivaprakash Paramasivam, Periyasamy Velusamy, J. Jerries Infanta, Venkatesan Ragavendran, J. Mayandi, Sonachalam Arumugam, Ikhyun Kim
{"title":"利用冲击管对用于光催化应用的 SrTiO3 纳米粒子的结构、形态和光学特性进行实验研究","authors":"Surendhar Sakthivel, Sivaprakash Paramasivam, Periyasamy Velusamy, J. Jerries Infanta, Venkatesan Ragavendran, J. Mayandi, Sonachalam Arumugam, Ikhyun Kim","doi":"10.1515/zpch-2023-0486","DOIUrl":null,"url":null,"abstract":"\n We investigated the role of dynamic shock waves in perovskite SrTiO3 (STO) material. XRD, FE-SEM, EDAX, FTIR, UV-DRS, XPS, and Raman spectroscopy were all used to examine the title material. When perovskite sample was loaded with shocks, its diffraction pattern did not show any crystal structure changes. The FE-SEM results suggest that the grain size increased linearly with the number of shocks. We used energy-dispersive X-ray spectroscopy to perform elemental analysis; results confirmed that SrTiO3 NPs were indeed present. Although the impulse of the shock wave changed the optical characteristics, it did not affect the molecular structure. To find the optical band gap energies of untreated and shocked NPs, Tauc plot relationships were used. The band-gap energies got smaller as the shock pulse became more substantial. The impact of shock waves caused oxygen vacancies and surface defects, lowering band gap energy. The test for photocatalytic testing showed that SrTiO3 NPs that are loaded with shock waves worked much better when they were exposed to visible light. The characteristics, including stress, strain, and bond length, were found to significantly influence photocatalytic applications. In addition, attempts were made to provide a viewpoint for future study. Overall, the objective of this research was to provide valuable insights for experts engaged in the field of SrTiO3.","PeriodicalId":506520,"journal":{"name":"Zeitschrift für Physikalische Chemie","volume":"185 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental investigation of structural, morphological, and optical characteristics of SrTiO3 nanoparticles using a shock tube for photocatalytic applications\",\"authors\":\"Surendhar Sakthivel, Sivaprakash Paramasivam, Periyasamy Velusamy, J. Jerries Infanta, Venkatesan Ragavendran, J. Mayandi, Sonachalam Arumugam, Ikhyun Kim\",\"doi\":\"10.1515/zpch-2023-0486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We investigated the role of dynamic shock waves in perovskite SrTiO3 (STO) material. XRD, FE-SEM, EDAX, FTIR, UV-DRS, XPS, and Raman spectroscopy were all used to examine the title material. When perovskite sample was loaded with shocks, its diffraction pattern did not show any crystal structure changes. The FE-SEM results suggest that the grain size increased linearly with the number of shocks. We used energy-dispersive X-ray spectroscopy to perform elemental analysis; results confirmed that SrTiO3 NPs were indeed present. Although the impulse of the shock wave changed the optical characteristics, it did not affect the molecular structure. To find the optical band gap energies of untreated and shocked NPs, Tauc plot relationships were used. The band-gap energies got smaller as the shock pulse became more substantial. The impact of shock waves caused oxygen vacancies and surface defects, lowering band gap energy. The test for photocatalytic testing showed that SrTiO3 NPs that are loaded with shock waves worked much better when they were exposed to visible light. The characteristics, including stress, strain, and bond length, were found to significantly influence photocatalytic applications. In addition, attempts were made to provide a viewpoint for future study. Overall, the objective of this research was to provide valuable insights for experts engaged in the field of SrTiO3.\",\"PeriodicalId\":506520,\"journal\":{\"name\":\"Zeitschrift für Physikalische Chemie\",\"volume\":\"185 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift für Physikalische Chemie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/zpch-2023-0486\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift für Physikalische Chemie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/zpch-2023-0486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experimental investigation of structural, morphological, and optical characteristics of SrTiO3 nanoparticles using a shock tube for photocatalytic applications
We investigated the role of dynamic shock waves in perovskite SrTiO3 (STO) material. XRD, FE-SEM, EDAX, FTIR, UV-DRS, XPS, and Raman spectroscopy were all used to examine the title material. When perovskite sample was loaded with shocks, its diffraction pattern did not show any crystal structure changes. The FE-SEM results suggest that the grain size increased linearly with the number of shocks. We used energy-dispersive X-ray spectroscopy to perform elemental analysis; results confirmed that SrTiO3 NPs were indeed present. Although the impulse of the shock wave changed the optical characteristics, it did not affect the molecular structure. To find the optical band gap energies of untreated and shocked NPs, Tauc plot relationships were used. The band-gap energies got smaller as the shock pulse became more substantial. The impact of shock waves caused oxygen vacancies and surface defects, lowering band gap energy. The test for photocatalytic testing showed that SrTiO3 NPs that are loaded with shock waves worked much better when they were exposed to visible light. The characteristics, including stress, strain, and bond length, were found to significantly influence photocatalytic applications. In addition, attempts were made to provide a viewpoint for future study. Overall, the objective of this research was to provide valuable insights for experts engaged in the field of SrTiO3.