Aleksandra Nastic, Larry Pershin, Prof. Javad Mostaghimi
{"title":"微尺度表面缺陷对热喷涂氧化铝液滴变形动力学的影响","authors":"Aleksandra Nastic, Larry Pershin, Prof. Javad Mostaghimi","doi":"10.1115/1.4064708","DOIUrl":null,"url":null,"abstract":"\n During plasma spraying, interaction between splats and surface micro-sized features can be critical to the splat dynamic progress and consequently to the coating microstructural development and interfacial bonding. The transient spreading of molten alumina impacting a flat substrate exhibiting micro-obstructions, commonly produced during surface machining, grinding and/or even polishing, is numerically investigated using a three-dimensional model comprising of splat solidification and shrinkage developments. Single isolated splats are also experimentally characterized using top surface scanning electron microscope (SEM) analysis.\n Droplets impacting directly onto a micro-sized surface protuberance show no signs of pre-mature splashing behavior. The microscopic features (˂5µm) are not able to generate flow instabilities to initially affect the splat inherent overall spreading. However, subsequent splat peripheral contact with target surface micro-obstructions, characterized by peak and valley features, induces peripheral lift, waviness, and instability. It follows that the ejected destabilized material shears/fractures during stretching triggering the formation of splash fingers. Solidification plays a major role in detracting the role of surface micro-obstructions, i.e. surface roughness, in splashing phenomena.","PeriodicalId":510895,"journal":{"name":"ASME journal of heat and mass transfer","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microscale Surface Defects Influence on Thermally Sprayed Alumina Droplets Deformation Dynamics\",\"authors\":\"Aleksandra Nastic, Larry Pershin, Prof. Javad Mostaghimi\",\"doi\":\"10.1115/1.4064708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n During plasma spraying, interaction between splats and surface micro-sized features can be critical to the splat dynamic progress and consequently to the coating microstructural development and interfacial bonding. The transient spreading of molten alumina impacting a flat substrate exhibiting micro-obstructions, commonly produced during surface machining, grinding and/or even polishing, is numerically investigated using a three-dimensional model comprising of splat solidification and shrinkage developments. Single isolated splats are also experimentally characterized using top surface scanning electron microscope (SEM) analysis.\\n Droplets impacting directly onto a micro-sized surface protuberance show no signs of pre-mature splashing behavior. The microscopic features (˂5µm) are not able to generate flow instabilities to initially affect the splat inherent overall spreading. However, subsequent splat peripheral contact with target surface micro-obstructions, characterized by peak and valley features, induces peripheral lift, waviness, and instability. It follows that the ejected destabilized material shears/fractures during stretching triggering the formation of splash fingers. Solidification plays a major role in detracting the role of surface micro-obstructions, i.e. surface roughness, in splashing phenomena.\",\"PeriodicalId\":510895,\"journal\":{\"name\":\"ASME journal of heat and mass transfer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME journal of heat and mass transfer\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4064708\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME journal of heat and mass transfer","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.1115/1.4064708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
During plasma spraying, interaction between splats and surface micro-sized features can be critical to the splat dynamic progress and consequently to the coating microstructural development and interfacial bonding. The transient spreading of molten alumina impacting a flat substrate exhibiting micro-obstructions, commonly produced during surface machining, grinding and/or even polishing, is numerically investigated using a three-dimensional model comprising of splat solidification and shrinkage developments. Single isolated splats are also experimentally characterized using top surface scanning electron microscope (SEM) analysis.
Droplets impacting directly onto a micro-sized surface protuberance show no signs of pre-mature splashing behavior. The microscopic features (˂5µm) are not able to generate flow instabilities to initially affect the splat inherent overall spreading. However, subsequent splat peripheral contact with target surface micro-obstructions, characterized by peak and valley features, induces peripheral lift, waviness, and instability. It follows that the ejected destabilized material shears/fractures during stretching triggering the formation of splash fingers. Solidification plays a major role in detracting the role of surface micro-obstructions, i.e. surface roughness, in splashing phenomena.