{"title":"用于粘性可压缩流模拟的高阶气体动通量求解器","authors":"Lan Jiang, Jie Wu, Liming Yang, Hao Dong","doi":"10.1002/fld.5272","DOIUrl":null,"url":null,"abstract":"<p>Although the gas kinetic schemes (GKS) have emerged as one of the powerful tools for simulating compressible flows, they exhibit several shortcomings. Since the local solution of continuous Boltzmann equation with the Maxwellian distribution function is used to calculate the numerical fluxes at the cell interface, the flux expression in GKS is usually more complicated. In this paper, a high-order simplified gas kinetic flux solver (GKFS) is presented for simulating two-dimensional compressible flows. Circular function-based GKFS (C-GKFS), which simplifies the Maxwellian distribution function into the circular function, combined with an improved weighted essentially non-oscillatory (WENO-Z) scheme is applied to capture more details of the flow fields with fewer grids. As a result, a simple high-order accurate C-GKFS is obtained, which improves the computing efficiency and reduce its complexity to facilitate the practical application of engineering. A series of benchmark-test problems are simulated and good agreement can be obtained compared with the references, which demonstrate that the high-order C-GKFS can achieve the desired accuracy.</p>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"96 5","pages":"789-805"},"PeriodicalIF":1.7000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-order gas kinetic flux solver for viscous compressible flow simulations\",\"authors\":\"Lan Jiang, Jie Wu, Liming Yang, Hao Dong\",\"doi\":\"10.1002/fld.5272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Although the gas kinetic schemes (GKS) have emerged as one of the powerful tools for simulating compressible flows, they exhibit several shortcomings. Since the local solution of continuous Boltzmann equation with the Maxwellian distribution function is used to calculate the numerical fluxes at the cell interface, the flux expression in GKS is usually more complicated. In this paper, a high-order simplified gas kinetic flux solver (GKFS) is presented for simulating two-dimensional compressible flows. Circular function-based GKFS (C-GKFS), which simplifies the Maxwellian distribution function into the circular function, combined with an improved weighted essentially non-oscillatory (WENO-Z) scheme is applied to capture more details of the flow fields with fewer grids. As a result, a simple high-order accurate C-GKFS is obtained, which improves the computing efficiency and reduce its complexity to facilitate the practical application of engineering. A series of benchmark-test problems are simulated and good agreement can be obtained compared with the references, which demonstrate that the high-order C-GKFS can achieve the desired accuracy.</p>\",\"PeriodicalId\":50348,\"journal\":{\"name\":\"International Journal for Numerical Methods in Fluids\",\"volume\":\"96 5\",\"pages\":\"789-805\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/fld.5272\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Fluids","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fld.5272","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
High-order gas kinetic flux solver for viscous compressible flow simulations
Although the gas kinetic schemes (GKS) have emerged as one of the powerful tools for simulating compressible flows, they exhibit several shortcomings. Since the local solution of continuous Boltzmann equation with the Maxwellian distribution function is used to calculate the numerical fluxes at the cell interface, the flux expression in GKS is usually more complicated. In this paper, a high-order simplified gas kinetic flux solver (GKFS) is presented for simulating two-dimensional compressible flows. Circular function-based GKFS (C-GKFS), which simplifies the Maxwellian distribution function into the circular function, combined with an improved weighted essentially non-oscillatory (WENO-Z) scheme is applied to capture more details of the flow fields with fewer grids. As a result, a simple high-order accurate C-GKFS is obtained, which improves the computing efficiency and reduce its complexity to facilitate the practical application of engineering. A series of benchmark-test problems are simulated and good agreement can be obtained compared with the references, which demonstrate that the high-order C-GKFS can achieve the desired accuracy.
期刊介绍:
The International Journal for Numerical Methods in Fluids publishes refereed papers describing significant developments in computational methods that are applicable to scientific and engineering problems in fluid mechanics, fluid dynamics, micro and bio fluidics, and fluid-structure interaction. Numerical methods for solving ancillary equations, such as transport and advection and diffusion, are also relevant. The Editors encourage contributions in the areas of multi-physics, multi-disciplinary and multi-scale problems involving fluid subsystems, verification and validation, uncertainty quantification, and model reduction.
Numerical examples that illustrate the described methods or their accuracy are in general expected. Discussions of papers already in print are also considered. However, papers dealing strictly with applications of existing methods or dealing with areas of research that are not deemed to be cutting edge by the Editors will not be considered for review.
The journal publishes full-length papers, which should normally be less than 25 journal pages in length. Two-part papers are discouraged unless considered necessary by the Editors.