春播荠菜有助于管理三种夏季杂草

IF 2.6 3区 农林科学 Q1 AGRONOMY Italian Journal of Agronomy Pub Date : 2024-02-08 DOI:10.4081/ija.2024.2211
Noemí Codina Pascual, J. Torra, B. Baraibar, A. Royo‐Esnal
{"title":"春播荠菜有助于管理三种夏季杂草","authors":"Noemí Codina Pascual, J. Torra, B. Baraibar, A. Royo‐Esnal","doi":"10.4081/ija.2024.2211","DOIUrl":null,"url":null,"abstract":"Camelina (Camelina sativa (L.) Crantz) is an attractive drought-tolerant crop for Mediterranean regions due to its rapid growth and ability to out-compete many dicotyledonous winter annual weeds. In this experiment the weed suppression capacity of spring sown camelina against Chenopodium album L. (common lambsquarters), Polygonum aviculare L. (prostrate knotweed), and Xanthium spinosum L. (spiny cocklebur) was studied. The trial was conducted in Lleida (Spain) between 2019 and 2021, and camelina was sown in March each year.  Experimental plots contained quadrats with each weed species as well as weed-free and crop-free quadrats. Height and aboveground biomass of weeds in competition with camelina decreased by over 50% compared to the controls. However, crop and weed growth had seasonal differences depending on the weather conditions: (1) a moderately dry spring promoted crop production (1573 kg ha-1); (2) a rainy spring benefited weed development, negatively affecting crop growth and yield (739 kg ha-1); and (3) a severe dry spring affected growth of both crop and weeds, reducing crop production by up to 80% (298 kg ha-1). The summer weed suppression capacity of camelina is enhanced by drought conditions, which makes camelina useful for managing these weeds.","PeriodicalId":14618,"journal":{"name":"Italian Journal of Agronomy","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spring sown camelina (Camelina sativa) contributes to the management of three summer weeds\",\"authors\":\"Noemí Codina Pascual, J. Torra, B. Baraibar, A. Royo‐Esnal\",\"doi\":\"10.4081/ija.2024.2211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Camelina (Camelina sativa (L.) Crantz) is an attractive drought-tolerant crop for Mediterranean regions due to its rapid growth and ability to out-compete many dicotyledonous winter annual weeds. In this experiment the weed suppression capacity of spring sown camelina against Chenopodium album L. (common lambsquarters), Polygonum aviculare L. (prostrate knotweed), and Xanthium spinosum L. (spiny cocklebur) was studied. The trial was conducted in Lleida (Spain) between 2019 and 2021, and camelina was sown in March each year.  Experimental plots contained quadrats with each weed species as well as weed-free and crop-free quadrats. Height and aboveground biomass of weeds in competition with camelina decreased by over 50% compared to the controls. However, crop and weed growth had seasonal differences depending on the weather conditions: (1) a moderately dry spring promoted crop production (1573 kg ha-1); (2) a rainy spring benefited weed development, negatively affecting crop growth and yield (739 kg ha-1); and (3) a severe dry spring affected growth of both crop and weeds, reducing crop production by up to 80% (298 kg ha-1). The summer weed suppression capacity of camelina is enhanced by drought conditions, which makes camelina useful for managing these weeds.\",\"PeriodicalId\":14618,\"journal\":{\"name\":\"Italian Journal of Agronomy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Italian Journal of Agronomy\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.4081/ija.2024.2211\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Italian Journal of Agronomy","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.4081/ija.2024.2211","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

荠菜(Camelina sativa (L.) Crantz)生长迅速,能与许多双子叶冬季一年生杂草竞争,因此是地中海地区颇具吸引力的耐旱作物。本试验研究了春播荠菜对Chenopodium album L.(普通羊草)、Polygonum aviculare L.(匍匐结缕草)和Xanthium spinosum L.(刺鸡冠花)杂草的抑制能力。试验于 2019 年至 2021 年期间在莱里达(西班牙)进行,每年 3 月播种荠菜。 试验地块包含有每种杂草的四分区以及无杂草和无作物的四分区。与对照组相比,与荠菜竞争的杂草的高度和地上生物量减少了 50%以上。然而,作物和杂草的生长因天气条件不同而存在季节性差异:(1)中等干旱的春季促进了作物产量(1573 千克/公顷-1);(2)多雨的春季有利于杂草生长,但对作物生长和产量产生不利影响(739 千克/公顷-1);(3)严重干旱的春季影响了作物和杂草的生长,使作物产量减少达 80%(298 千克/公顷-1)。干旱条件增强了荠菜抑制夏季杂草的能力,因此荠菜可用于管理这些杂草。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spring sown camelina (Camelina sativa) contributes to the management of three summer weeds
Camelina (Camelina sativa (L.) Crantz) is an attractive drought-tolerant crop for Mediterranean regions due to its rapid growth and ability to out-compete many dicotyledonous winter annual weeds. In this experiment the weed suppression capacity of spring sown camelina against Chenopodium album L. (common lambsquarters), Polygonum aviculare L. (prostrate knotweed), and Xanthium spinosum L. (spiny cocklebur) was studied. The trial was conducted in Lleida (Spain) between 2019 and 2021, and camelina was sown in March each year.  Experimental plots contained quadrats with each weed species as well as weed-free and crop-free quadrats. Height and aboveground biomass of weeds in competition with camelina decreased by over 50% compared to the controls. However, crop and weed growth had seasonal differences depending on the weather conditions: (1) a moderately dry spring promoted crop production (1573 kg ha-1); (2) a rainy spring benefited weed development, negatively affecting crop growth and yield (739 kg ha-1); and (3) a severe dry spring affected growth of both crop and weeds, reducing crop production by up to 80% (298 kg ha-1). The summer weed suppression capacity of camelina is enhanced by drought conditions, which makes camelina useful for managing these weeds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
4.50%
发文量
25
审稿时长
10 weeks
期刊介绍: The Italian Journal of Agronomy (IJA) is the official journal of the Italian Society for Agronomy. It publishes quarterly original articles and reviews reporting experimental and theoretical contributions to agronomy and crop science, with main emphasis on original articles from Italy and countries having similar agricultural conditions. The journal deals with all aspects of Agricultural and Environmental Sciences, the interactions between cropping systems and sustainable development. Multidisciplinary articles that bridge agronomy with ecology, environmental and social sciences are also welcome.
期刊最新文献
Super high-density olive orchard system affects the main olive crop pests Nutrient-coated urea mitigates deleterious impacts of salinity and supports wheat performance by enhancing antioxidant activities, photosynthetic performance and nitrogen use efficiency Participatory ecodesign of crop management based on Life Cycle Assessment: an approach to inform the strategy of a Protected Denomination of Origin. A case study in viticulture Buckwheat (Fagopyrum esculentum Moench.) as an emerging companion crop in annual cropping systems: a systematic review Co-designing innovative cropping systems with stakeholders
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1