贝叶斯加性回归树的可视化方法

Alan N. Inglis, Andrew Parnell, Catherine Hurley
{"title":"贝叶斯加性回归树的可视化方法","authors":"Alan N. Inglis, Andrew Parnell, Catherine Hurley","doi":"10.52933/jdssv.v4i1.79","DOIUrl":null,"url":null,"abstract":"Tree-based regression and classification has become a standard tool in modern data science. Bayesian Additive Regression Trees (BART) has in particular gained wide popularity due its flexibility in dealing with interactions and non-linear effects. BART is a Bayesian tree-based machine learning method that can be applied to both regression and classification problems and yields competitive or superior results when compared to other predictive models. As a Bayesian model, BART allows the practitioner to explore the uncertainty around predictions through the posterior distribution. In this paper, we present new Visualisation techniques for exploring BART models. We construct conventional plots to analyse a model’s performance and stability as well as create new tree-based plots to analyse variable importance, interaction, and tree structure. We employ Value Suppressing Uncertainty Palettes (VSUP) to construct heatmaps that display variable importance and interactions jointly using colour scale to represent posterior uncertainty. Our new Visualisations are designed to work with the most popular BART R packages available, namely BART, dbarts, and bartMachine. Our approach is implemented in the R package bartMan (BART Model ANalysis).","PeriodicalId":93459,"journal":{"name":"Journal of data science, statistics, and visualisation","volume":"46 7-8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visualisations for Bayesian Additive Regression Trees\",\"authors\":\"Alan N. Inglis, Andrew Parnell, Catherine Hurley\",\"doi\":\"10.52933/jdssv.v4i1.79\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tree-based regression and classification has become a standard tool in modern data science. Bayesian Additive Regression Trees (BART) has in particular gained wide popularity due its flexibility in dealing with interactions and non-linear effects. BART is a Bayesian tree-based machine learning method that can be applied to both regression and classification problems and yields competitive or superior results when compared to other predictive models. As a Bayesian model, BART allows the practitioner to explore the uncertainty around predictions through the posterior distribution. In this paper, we present new Visualisation techniques for exploring BART models. We construct conventional plots to analyse a model’s performance and stability as well as create new tree-based plots to analyse variable importance, interaction, and tree structure. We employ Value Suppressing Uncertainty Palettes (VSUP) to construct heatmaps that display variable importance and interactions jointly using colour scale to represent posterior uncertainty. Our new Visualisations are designed to work with the most popular BART R packages available, namely BART, dbarts, and bartMachine. Our approach is implemented in the R package bartMan (BART Model ANalysis).\",\"PeriodicalId\":93459,\"journal\":{\"name\":\"Journal of data science, statistics, and visualisation\",\"volume\":\"46 7-8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of data science, statistics, and visualisation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52933/jdssv.v4i1.79\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of data science, statistics, and visualisation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52933/jdssv.v4i1.79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于树的回归和分类已成为现代数据科学的标准工具。贝叶斯加性回归树(BART)因其在处理交互和非线性效应方面的灵活性,尤其受到广泛欢迎。BART 是一种基于贝叶斯树的机器学习方法,既可应用于回归问题,也可应用于分类问题,与其他预测模型相比,它能产生有竞争力或更优越的结果。作为一种贝叶斯模型,BART 允许实践者通过后验分布来探索预测的不确定性。在本文中,我们介绍了探索 BART 模型的新可视化技术。我们构建了常规图来分析模型的性能和稳定性,并创建了新的树状图来分析变量的重要性、交互作用和树状结构。我们采用价值抑制不确定性调色板(VSUP)来构建热图,利用色标共同显示变量重要性和交互作用,以表示后验不确定性。我们的新可视化设计可与现有最流行的 BART R 软件包(即 BART、dbarts 和 bartMachine)配合使用。我们的方法是在 R 软件包 bartMan(BART 模型分析)中实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Visualisations for Bayesian Additive Regression Trees
Tree-based regression and classification has become a standard tool in modern data science. Bayesian Additive Regression Trees (BART) has in particular gained wide popularity due its flexibility in dealing with interactions and non-linear effects. BART is a Bayesian tree-based machine learning method that can be applied to both regression and classification problems and yields competitive or superior results when compared to other predictive models. As a Bayesian model, BART allows the practitioner to explore the uncertainty around predictions through the posterior distribution. In this paper, we present new Visualisation techniques for exploring BART models. We construct conventional plots to analyse a model’s performance and stability as well as create new tree-based plots to analyse variable importance, interaction, and tree structure. We employ Value Suppressing Uncertainty Palettes (VSUP) to construct heatmaps that display variable importance and interactions jointly using colour scale to represent posterior uncertainty. Our new Visualisations are designed to work with the most popular BART R packages available, namely BART, dbarts, and bartMachine. Our approach is implemented in the R package bartMan (BART Model ANalysis).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Efficient Way to Find Optimal Crossover Designs Using CVX for Precision Medicine Visual Interactive Parameter Selection for Temporal Blind Source Separation RoA: visual analytics support for deconfounded causal inference in observational studies An edge preserving median filter for images based on level-sets Visualisations for Bayesian Additive Regression Trees
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1