{"title":"非洲东部 1 月和 2 月降水主导模式的气候学特征和年际变化","authors":"Laban Lameck Kebacho","doi":"10.1002/joc.8387","DOIUrl":null,"url":null,"abstract":"The climatology and variability of the January to February (JF) season in eastern Africa's (EA) precipitation are examined during the 1960–2020 period, as off‐season climate could have dire consequences, considering agricultural practices tie to the seasonal cycle of precipitation. The analysis in this study is divided into four parts. The first is the climatological background of variability during the JF season. Second, the spatiotemporal variability of the leading mode of the JF precipitation is described using an empirical orthogonal function (EOF) method. Third, anomalous atmospheric circulations linked to the variability of the JF precipitation were examined through composite analysis. Fourth, the link between JF precipitation and sea surface temperature (SST) is explored using composite and correlation analyses. The leading mode (EOF1) shows a monopole variation, with a positive anomaly in the entire region accounting for 55.1% of the total variance. EOF1 is linked to the SST anomaly (SSTA) over the tropical Indian Ocean (TIO). A warm (cool) SSTA in the TIO induces diabatic warming/adiabatic cooling (diabatic cooling/adiabatic warming). This leads to the rising (sinking) of warm and moist air (cold and dry air) from the lower to higher (higher to lower) troposphere via the ascending (descending) branch of the Walker circulation and contributes to the upper warm (cold) temperature anomaly centred at ~300 hPa. The warm (cold) anomaly is closely associated with the upper‐level westerly (easterly) and divergence (convergence) anomalies at the upper side of the warm (cold) core, coupled with ascending (descending) and deep wet (dry) anomalies below the warm (cold) core. This induces moisture convergence (divergence) and unstable (stable) conditions that favour (suppresses) precipitation over EA. Consequently, this study may facilitate the prediction of the JF precipitation and decrease in socio‐economic losses in EA.","PeriodicalId":505763,"journal":{"name":"International Journal of Climatology","volume":"56 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Climatological characteristics and interannual variability of the leading mode of eastern African precipitation in January and February\",\"authors\":\"Laban Lameck Kebacho\",\"doi\":\"10.1002/joc.8387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The climatology and variability of the January to February (JF) season in eastern Africa's (EA) precipitation are examined during the 1960–2020 period, as off‐season climate could have dire consequences, considering agricultural practices tie to the seasonal cycle of precipitation. The analysis in this study is divided into four parts. The first is the climatological background of variability during the JF season. Second, the spatiotemporal variability of the leading mode of the JF precipitation is described using an empirical orthogonal function (EOF) method. Third, anomalous atmospheric circulations linked to the variability of the JF precipitation were examined through composite analysis. Fourth, the link between JF precipitation and sea surface temperature (SST) is explored using composite and correlation analyses. The leading mode (EOF1) shows a monopole variation, with a positive anomaly in the entire region accounting for 55.1% of the total variance. EOF1 is linked to the SST anomaly (SSTA) over the tropical Indian Ocean (TIO). A warm (cool) SSTA in the TIO induces diabatic warming/adiabatic cooling (diabatic cooling/adiabatic warming). This leads to the rising (sinking) of warm and moist air (cold and dry air) from the lower to higher (higher to lower) troposphere via the ascending (descending) branch of the Walker circulation and contributes to the upper warm (cold) temperature anomaly centred at ~300 hPa. The warm (cold) anomaly is closely associated with the upper‐level westerly (easterly) and divergence (convergence) anomalies at the upper side of the warm (cold) core, coupled with ascending (descending) and deep wet (dry) anomalies below the warm (cold) core. This induces moisture convergence (divergence) and unstable (stable) conditions that favour (suppresses) precipitation over EA. Consequently, this study may facilitate the prediction of the JF precipitation and decrease in socio‐economic losses in EA.\",\"PeriodicalId\":505763,\"journal\":{\"name\":\"International Journal of Climatology\",\"volume\":\"56 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Climatology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/joc.8387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Climatology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/joc.8387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Climatological characteristics and interannual variability of the leading mode of eastern African precipitation in January and February
The climatology and variability of the January to February (JF) season in eastern Africa's (EA) precipitation are examined during the 1960–2020 period, as off‐season climate could have dire consequences, considering agricultural practices tie to the seasonal cycle of precipitation. The analysis in this study is divided into four parts. The first is the climatological background of variability during the JF season. Second, the spatiotemporal variability of the leading mode of the JF precipitation is described using an empirical orthogonal function (EOF) method. Third, anomalous atmospheric circulations linked to the variability of the JF precipitation were examined through composite analysis. Fourth, the link between JF precipitation and sea surface temperature (SST) is explored using composite and correlation analyses. The leading mode (EOF1) shows a monopole variation, with a positive anomaly in the entire region accounting for 55.1% of the total variance. EOF1 is linked to the SST anomaly (SSTA) over the tropical Indian Ocean (TIO). A warm (cool) SSTA in the TIO induces diabatic warming/adiabatic cooling (diabatic cooling/adiabatic warming). This leads to the rising (sinking) of warm and moist air (cold and dry air) from the lower to higher (higher to lower) troposphere via the ascending (descending) branch of the Walker circulation and contributes to the upper warm (cold) temperature anomaly centred at ~300 hPa. The warm (cold) anomaly is closely associated with the upper‐level westerly (easterly) and divergence (convergence) anomalies at the upper side of the warm (cold) core, coupled with ascending (descending) and deep wet (dry) anomalies below the warm (cold) core. This induces moisture convergence (divergence) and unstable (stable) conditions that favour (suppresses) precipitation over EA. Consequently, this study may facilitate the prediction of the JF precipitation and decrease in socio‐economic losses in EA.