优化高温材料激光束焊接参数的数值模型

IF 0.6 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Materiali in tehnologije Pub Date : 2024-02-06 DOI:10.17222/mit.2023.990
R. Palanivel, T. M. Krishnan, Yousef Alqurashi, M. A. Rasheed
{"title":"优化高温材料激光束焊接参数的数值模型","authors":"R. Palanivel, T. M. Krishnan, Yousef Alqurashi, M. A. Rasheed","doi":"10.17222/mit.2023.990","DOIUrl":null,"url":null,"abstract":"Ferritic stainless steel (FSS) is one of the high-temperature materials, used in many industries for sustainable applications such as power plants, automotive, offshore and chemical industries. Joining these materials is challenging due to the formation of an intermetallic and the grain growth with high-heat-input welding methods. Laser beam welding (LBW) that uses a low heat input was used successfully to join AISI 409 FSS tubes. In this work the welding speed and focal distance were varied as per a two-factor, three-level face-centred central composite design (FCCCD) to join AISI 409 FSS. A numerical model was developed to correlate the relationship between the ultimate tensile strength (UTS) and LBW process parameters. The validation of the developed model was carried out using the analysis of variance. Both welding speed and focal distance have a significant effect on determining the UTS. The optimised process parameters provided for a better UTS as reported in this paper.","PeriodicalId":18258,"journal":{"name":"Materiali in tehnologije","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NUMERICAL MODEL FOR OPTIMIZING THE PARAMETERS FOR LASER-BEAM WELDING OF A HIGH-TEMPERATURE MATERIAL\",\"authors\":\"R. Palanivel, T. M. Krishnan, Yousef Alqurashi, M. A. Rasheed\",\"doi\":\"10.17222/mit.2023.990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ferritic stainless steel (FSS) is one of the high-temperature materials, used in many industries for sustainable applications such as power plants, automotive, offshore and chemical industries. Joining these materials is challenging due to the formation of an intermetallic and the grain growth with high-heat-input welding methods. Laser beam welding (LBW) that uses a low heat input was used successfully to join AISI 409 FSS tubes. In this work the welding speed and focal distance were varied as per a two-factor, three-level face-centred central composite design (FCCCD) to join AISI 409 FSS. A numerical model was developed to correlate the relationship between the ultimate tensile strength (UTS) and LBW process parameters. The validation of the developed model was carried out using the analysis of variance. Both welding speed and focal distance have a significant effect on determining the UTS. The optimised process parameters provided for a better UTS as reported in this paper.\",\"PeriodicalId\":18258,\"journal\":{\"name\":\"Materiali in tehnologije\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materiali in tehnologije\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.17222/mit.2023.990\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materiali in tehnologije","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.17222/mit.2023.990","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

铁素体不锈钢(FSS)是高温材料之一,在发电厂、汽车、近海和化学工业等许多行业中都得到了持续应用。由于高热输入焊接方法会形成金属间化合物和晶粒长大,因此连接这些材料具有挑战性。使用低热输入的激光束焊接(LBW)成功地连接了 AISI 409 FSS 管。在这项工作中,焊接速度和焦距根据双因素、三级面心中心复合设计(FCCCD)而变化,以连接 AISI 409 FSS。开发了一个数值模型来关联极限拉伸强度(UTS)和枸杞焊接工艺参数之间的关系。利用方差分析对所建立的模型进行了验证。焊接速度和焦距对确定 UTS 都有显著影响。正如本文所报告的,优化后的工艺参数可提供更好的 UTS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NUMERICAL MODEL FOR OPTIMIZING THE PARAMETERS FOR LASER-BEAM WELDING OF A HIGH-TEMPERATURE MATERIAL
Ferritic stainless steel (FSS) is one of the high-temperature materials, used in many industries for sustainable applications such as power plants, automotive, offshore and chemical industries. Joining these materials is challenging due to the formation of an intermetallic and the grain growth with high-heat-input welding methods. Laser beam welding (LBW) that uses a low heat input was used successfully to join AISI 409 FSS tubes. In this work the welding speed and focal distance were varied as per a two-factor, three-level face-centred central composite design (FCCCD) to join AISI 409 FSS. A numerical model was developed to correlate the relationship between the ultimate tensile strength (UTS) and LBW process parameters. The validation of the developed model was carried out using the analysis of variance. Both welding speed and focal distance have a significant effect on determining the UTS. The optimised process parameters provided for a better UTS as reported in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materiali in tehnologije
Materiali in tehnologije 工程技术-材料科学:综合
CiteScore
1.30
自引率
0.00%
发文量
73
审稿时长
4-8 weeks
期刊介绍: The journal MATERIALI IN TEHNOLOGIJE/MATERIALS AND TECHNOLOGY is a scientific journal, devoted to original papers and review scientific papers concerned with the areas of fundamental and applied science and technology. Topics of particular interest include metallic materials, inorganic materials, polymers, vacuum technique and lately nanomaterials.
期刊最新文献
EVALUATION OF THE MAGNETIC PROPERTIES OF Ag-Au-Pd-Cu DENTAL ALLOYS EXPERIMENTAL STUDY ON MAG WELDED E350 HSLA STEEL JOINTS A SIMPLE STRUCTURED MULTIBAND TERAHERTZ METAMATERIAL ABSORBER WITH A HIGH Q FACTOR INVESTIGATION OF MECHANICAL AND PHYSICAL PROPERTIES OF DATE PALM STEM FIBRE REINFORCED EPOXY COMPOSITES INFLUENCE OF SPRAY DISTANCE ON THE POROSITY OF Ni-BASED AMORPHOUS COATINGS: NUMERICAL SIMULATION AND EXPERIMENT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1