M. A. Memon, Kavikumar Jacob, H. B. Lanjwani, A. Obalalu, D. Nagarajan
{"title":"拉伸/收缩表面上 Fe-Casson Base 纳米流体的辐射 MHD 边界层流动和传热特性","authors":"M. A. Memon, Kavikumar Jacob, H. B. Lanjwani, A. Obalalu, D. Nagarajan","doi":"10.4028/p-ha0zud","DOIUrl":null,"url":null,"abstract":"In this paper, there is considered MHD boundary layer flow and heat transfer characteristics of Fe-Casson base nanofluid over an exponentially stretching/shrinking surface along the heat source/sink and Newtonian heating effects. In this regard, to develop the system of the governing equations, the one phase model named as Tiwari and Das model is considered with iron nanoparticles. The non-linear governing PDEs are first changed into the system of ODEs using suitable similarity transformations. Later on, the equations are solved numerically by using bvp4c in Matlab software. Effects of certain physical parameters on skin friction coefficient and the local Nusselt number are illustrated graphically. Moreover, the velocity and temperature profiles are examined to observe the influence of various physical parameters such as, Casson, magnetic, suction, radiation, Newtonian heating, heat source/sink and the nanoparticles volume fractions. It is seen that an increase in Casson, magnetic, suction and the nanoparticle volume fractions decrease the velocity profiles for both shrinking and shrinking cases of surface. The temperature profile recedes due to augmentation of Prandlt number and the suction parameter for both stretching/shrinking case while increases with increase in Magnetic, radiation and nanoparticles volume fractions.","PeriodicalId":508865,"journal":{"name":"Defect and Diffusion Forum","volume":"12 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radiative MHD Boundary Layer Flow and Heat Transfer Characteristics of Fe-Casson Base Nanofluid over Stretching/Shrinking Surface\",\"authors\":\"M. A. Memon, Kavikumar Jacob, H. B. Lanjwani, A. Obalalu, D. Nagarajan\",\"doi\":\"10.4028/p-ha0zud\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, there is considered MHD boundary layer flow and heat transfer characteristics of Fe-Casson base nanofluid over an exponentially stretching/shrinking surface along the heat source/sink and Newtonian heating effects. In this regard, to develop the system of the governing equations, the one phase model named as Tiwari and Das model is considered with iron nanoparticles. The non-linear governing PDEs are first changed into the system of ODEs using suitable similarity transformations. Later on, the equations are solved numerically by using bvp4c in Matlab software. Effects of certain physical parameters on skin friction coefficient and the local Nusselt number are illustrated graphically. Moreover, the velocity and temperature profiles are examined to observe the influence of various physical parameters such as, Casson, magnetic, suction, radiation, Newtonian heating, heat source/sink and the nanoparticles volume fractions. It is seen that an increase in Casson, magnetic, suction and the nanoparticle volume fractions decrease the velocity profiles for both shrinking and shrinking cases of surface. The temperature profile recedes due to augmentation of Prandlt number and the suction parameter for both stretching/shrinking case while increases with increase in Magnetic, radiation and nanoparticles volume fractions.\",\"PeriodicalId\":508865,\"journal\":{\"name\":\"Defect and Diffusion Forum\",\"volume\":\"12 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Defect and Diffusion Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-ha0zud\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defect and Diffusion Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-ha0zud","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Radiative MHD Boundary Layer Flow and Heat Transfer Characteristics of Fe-Casson Base Nanofluid over Stretching/Shrinking Surface
In this paper, there is considered MHD boundary layer flow and heat transfer characteristics of Fe-Casson base nanofluid over an exponentially stretching/shrinking surface along the heat source/sink and Newtonian heating effects. In this regard, to develop the system of the governing equations, the one phase model named as Tiwari and Das model is considered with iron nanoparticles. The non-linear governing PDEs are first changed into the system of ODEs using suitable similarity transformations. Later on, the equations are solved numerically by using bvp4c in Matlab software. Effects of certain physical parameters on skin friction coefficient and the local Nusselt number are illustrated graphically. Moreover, the velocity and temperature profiles are examined to observe the influence of various physical parameters such as, Casson, magnetic, suction, radiation, Newtonian heating, heat source/sink and the nanoparticles volume fractions. It is seen that an increase in Casson, magnetic, suction and the nanoparticle volume fractions decrease the velocity profiles for both shrinking and shrinking cases of surface. The temperature profile recedes due to augmentation of Prandlt number and the suction parameter for both stretching/shrinking case while increases with increase in Magnetic, radiation and nanoparticles volume fractions.