高熵合金铜基子系统的热物理性质

Yuriy Plevachuk, L. Romaka, I. Janotová, P. Svec, D. Janičkovič, R. Novakovic, V. Poverzhuk
{"title":"高熵合金铜基子系统的热物理性质","authors":"Yuriy Plevachuk, L. Romaka, I. Janotová, P. Svec, D. Janičkovič, R. Novakovic, V. Poverzhuk","doi":"10.4028/p-gl7mcs","DOIUrl":null,"url":null,"abstract":"According to the well-known concept of multicomponent high-entropy alloys, high entropy of mixing can stabilize the formation of solid solutions (simple bcc or fcc crystal structure) during solidification. Stabilization of the solid solution and prevention of the formation of intermetallic phases during solidification is provided by the high entropy of mixing in the solid and liquid states. High-entropy alloys have increased strength, high hardness, thermal stability in combination with good resistance to oxidation and corrosion. These properties allow to significantly expand the scope of these alloys. In this work, the electrical resistivity, thermoelectric power and surface tension of binary Cu–Sn, Cu–Ga and Cu–Bi alloys, which are the sub-system components of model low-temperature high-entropy Bi–Cu–Ga–Pb–Sn alloys, have been studied in a wide temperature range including solid and liquid states. The lack of the surface tension data of the above-mentioned alloys is compensated by the model predicted values.","PeriodicalId":508865,"journal":{"name":"Defect and Diffusion Forum","volume":"12 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermophysical Properties of Cu-Based Subsystems of High-Entropy Alloys\",\"authors\":\"Yuriy Plevachuk, L. Romaka, I. Janotová, P. Svec, D. Janičkovič, R. Novakovic, V. Poverzhuk\",\"doi\":\"10.4028/p-gl7mcs\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"According to the well-known concept of multicomponent high-entropy alloys, high entropy of mixing can stabilize the formation of solid solutions (simple bcc or fcc crystal structure) during solidification. Stabilization of the solid solution and prevention of the formation of intermetallic phases during solidification is provided by the high entropy of mixing in the solid and liquid states. High-entropy alloys have increased strength, high hardness, thermal stability in combination with good resistance to oxidation and corrosion. These properties allow to significantly expand the scope of these alloys. In this work, the electrical resistivity, thermoelectric power and surface tension of binary Cu–Sn, Cu–Ga and Cu–Bi alloys, which are the sub-system components of model low-temperature high-entropy Bi–Cu–Ga–Pb–Sn alloys, have been studied in a wide temperature range including solid and liquid states. The lack of the surface tension data of the above-mentioned alloys is compensated by the model predicted values.\",\"PeriodicalId\":508865,\"journal\":{\"name\":\"Defect and Diffusion Forum\",\"volume\":\"12 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Defect and Diffusion Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-gl7mcs\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defect and Diffusion Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-gl7mcs","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

根据众所周知的多组分高熵合金概念,高混合熵可在凝固过程中稳定固溶体(简单的 bcc 或 fcc 晶体结构)的形成。固态和液态的高混合熵可在凝固过程中稳定固溶体并防止金属间相的形成。高熵合金具有更高的强度、硬度、热稳定性以及良好的抗氧化性和抗腐蚀性。这些特性大大扩展了这些合金的应用范围。在这项工作中,研究了二元铜-锡、铜-镓和铜-铋合金(模型低温高熵铋-铜-镓-铅-锡合金的子系统成分)在包括固态和液态在内的宽温度范围内的电阻率、热电功率和表面张力。模型预测值弥补了上述合金表面张力数据的不足。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermophysical Properties of Cu-Based Subsystems of High-Entropy Alloys
According to the well-known concept of multicomponent high-entropy alloys, high entropy of mixing can stabilize the formation of solid solutions (simple bcc or fcc crystal structure) during solidification. Stabilization of the solid solution and prevention of the formation of intermetallic phases during solidification is provided by the high entropy of mixing in the solid and liquid states. High-entropy alloys have increased strength, high hardness, thermal stability in combination with good resistance to oxidation and corrosion. These properties allow to significantly expand the scope of these alloys. In this work, the electrical resistivity, thermoelectric power and surface tension of binary Cu–Sn, Cu–Ga and Cu–Bi alloys, which are the sub-system components of model low-temperature high-entropy Bi–Cu–Ga–Pb–Sn alloys, have been studied in a wide temperature range including solid and liquid states. The lack of the surface tension data of the above-mentioned alloys is compensated by the model predicted values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Algorithm for Detecting Surface Defects in Steel Strips Based on an Improved Lightweight Network Low-Temperature Elastic Properties of Molybdenum Doped Non-Equiatomic High Entropy Alloys of the Fe-Co-Ni-Cr System Comparative Analysis of Structural Reinforcement with Viscoelastic Energy Dissipators, Friction and Metal Creep in Tall Buildings Application of CALPHAD Method for Predicting of Concentration Range of Amorphization of Transition Metals Melts Important of Slip Effects in Non-Newtonian Nanofluid Flow with Heat Generation for Enhanced Heat Transfer Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1