Pingmin Zhang, Gang Yao, Qingqing Zheng, Xin-Yu Fang, Di Wu
{"title":"复杂各向异性介质的改进型纯准 P 波方程","authors":"Pingmin Zhang, Gang Yao, Qingqing Zheng, Xin-Yu Fang, Di Wu","doi":"10.1093/jge/gxae020","DOIUrl":null,"url":null,"abstract":"\n An accurate pure qP-wave equation in TI media and its efficient and stable implementation are valuable for seismic imaging and inversion. Owing to the complexity of the qP-wave phase velocity expression in anisotropic media, it is difficult to construct such a pure qP-wave equation. In this paper, we combine the Taylor expansion and scalar operator methods to formulate an efficient and stable pure qP-wave equation in TI media. First, the Taylor expansion method is used to convert the square-root term into a fractional term in the qP-wave phase velocity expression. We further improve the approximation accuracy of the resulting equation by a correction technique. Then, the scalar operator is applied to scalarize the equivalent form of the fractional term in the approximated dispersion equation, deriving a simple and easy-to-implement pure qP-wave equation. We utilize the optical flow method to compute the direction of wave propagation, which improves the calculation accuracy of the scalar operators. Numerical experiments with representative models demonstrate that the new method has higher accuracy and better adaptability to models with strong anisotropy, complex structure, and rapid variation of the tilt angle than previous methods.","PeriodicalId":54820,"journal":{"name":"Journal of Geophysics and Engineering","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An improved pure quasi-P-wave equation for complex anisotropic media\",\"authors\":\"Pingmin Zhang, Gang Yao, Qingqing Zheng, Xin-Yu Fang, Di Wu\",\"doi\":\"10.1093/jge/gxae020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n An accurate pure qP-wave equation in TI media and its efficient and stable implementation are valuable for seismic imaging and inversion. Owing to the complexity of the qP-wave phase velocity expression in anisotropic media, it is difficult to construct such a pure qP-wave equation. In this paper, we combine the Taylor expansion and scalar operator methods to formulate an efficient and stable pure qP-wave equation in TI media. First, the Taylor expansion method is used to convert the square-root term into a fractional term in the qP-wave phase velocity expression. We further improve the approximation accuracy of the resulting equation by a correction technique. Then, the scalar operator is applied to scalarize the equivalent form of the fractional term in the approximated dispersion equation, deriving a simple and easy-to-implement pure qP-wave equation. We utilize the optical flow method to compute the direction of wave propagation, which improves the calculation accuracy of the scalar operators. Numerical experiments with representative models demonstrate that the new method has higher accuracy and better adaptability to models with strong anisotropy, complex structure, and rapid variation of the tilt angle than previous methods.\",\"PeriodicalId\":54820,\"journal\":{\"name\":\"Journal of Geophysics and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysics and Engineering\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1093/jge/gxae020\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysics and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1093/jge/gxae020","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
TI 介质中精确的纯 qP 波方程及其高效稳定的实现对地震成像和反演非常重要。由于各向异性介质中 qP 波相位速度表达的复杂性,构建这样一个纯 qP 波方程非常困难。本文结合泰勒展开法和标量算子法,提出了一种高效稳定的 TI 介质中的纯 qP 波方程。首先,我们使用泰勒展开法将 qP 波相位速度表达式中的平方根项转换为分数项。我们通过修正技术进一步提高了所得方程的近似精度。然后,应用标量算子将近似色散方程中分数项的等效形式标量化,从而得出一个简单且易于实现的纯 qP 波方程。我们利用光流方法计算波的传播方向,从而提高了标量算子的计算精度。用代表性模型进行的数值实验证明,与以前的方法相比,新方法具有更高的精度,对各向异性强、结构复杂、倾斜角变化快的模型具有更好的适应性。
An improved pure quasi-P-wave equation for complex anisotropic media
An accurate pure qP-wave equation in TI media and its efficient and stable implementation are valuable for seismic imaging and inversion. Owing to the complexity of the qP-wave phase velocity expression in anisotropic media, it is difficult to construct such a pure qP-wave equation. In this paper, we combine the Taylor expansion and scalar operator methods to formulate an efficient and stable pure qP-wave equation in TI media. First, the Taylor expansion method is used to convert the square-root term into a fractional term in the qP-wave phase velocity expression. We further improve the approximation accuracy of the resulting equation by a correction technique. Then, the scalar operator is applied to scalarize the equivalent form of the fractional term in the approximated dispersion equation, deriving a simple and easy-to-implement pure qP-wave equation. We utilize the optical flow method to compute the direction of wave propagation, which improves the calculation accuracy of the scalar operators. Numerical experiments with representative models demonstrate that the new method has higher accuracy and better adaptability to models with strong anisotropy, complex structure, and rapid variation of the tilt angle than previous methods.
期刊介绍:
Journal of Geophysics and Engineering aims to promote research and developments in geophysics and related areas of engineering. It has a predominantly applied science and engineering focus, but solicits and accepts high-quality contributions in all earth-physics disciplines, including geodynamics, natural and controlled-source seismology, oil, gas and mineral exploration, petrophysics and reservoir geophysics. The journal covers those aspects of engineering that are closely related to geophysics, or on the targets and problems that geophysics addresses. Typically, this is engineering focused on the subsurface, particularly petroleum engineering, rock mechanics, geophysical software engineering, drilling technology, remote sensing, instrumentation and sensor design.