用生成式人工智能分析债换自然中的全球利用率和错失的机会

Nataliya Tkachenko, Simon Frieder, Ryan-Rhys Griffiths, Christoph Nedopil
{"title":"用生成式人工智能分析债换自然中的全球利用率和错失的机会","authors":"Nataliya Tkachenko, Simon Frieder, Ryan-Rhys Griffiths, Christoph Nedopil","doi":"10.3389/frai.2024.1167137","DOIUrl":null,"url":null,"abstract":"We deploy a prompt-augmented GPT-4 model to distill comprehensive datasets on the global application of debt-for-nature swaps (DNS), a pivotal financial tool for environmental conservation. Our analysis includes 195 nations and identifies 21 countries that have not yet used DNS before as prime candidates for DNS. A significant proportion demonstrates consistent commitments to conservation finance (0.86 accuracy as compared to historical swaps records). Conversely, 35 countries previously active in DNS before 2010 have since been identified as unsuitable. Notably, Argentina, grappling with soaring inflation and a substantial sovereign debt crisis, and Poland, which has achieved economic stability and gained access to alternative EU conservation funds, exemplify the shifting suitability landscape. The study's outcomes illuminate the fragility of DNS as a conservation strategy amid economic and political volatility.","PeriodicalId":508738,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"51 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analyzing global utilization and missed opportunities in debt-for-nature swaps with generative AI\",\"authors\":\"Nataliya Tkachenko, Simon Frieder, Ryan-Rhys Griffiths, Christoph Nedopil\",\"doi\":\"10.3389/frai.2024.1167137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We deploy a prompt-augmented GPT-4 model to distill comprehensive datasets on the global application of debt-for-nature swaps (DNS), a pivotal financial tool for environmental conservation. Our analysis includes 195 nations and identifies 21 countries that have not yet used DNS before as prime candidates for DNS. A significant proportion demonstrates consistent commitments to conservation finance (0.86 accuracy as compared to historical swaps records). Conversely, 35 countries previously active in DNS before 2010 have since been identified as unsuitable. Notably, Argentina, grappling with soaring inflation and a substantial sovereign debt crisis, and Poland, which has achieved economic stability and gained access to alternative EU conservation funds, exemplify the shifting suitability landscape. The study's outcomes illuminate the fragility of DNS as a conservation strategy amid economic and political volatility.\",\"PeriodicalId\":508738,\"journal\":{\"name\":\"Frontiers in Artificial Intelligence\",\"volume\":\"51 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frai.2024.1167137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2024.1167137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们采用了一个及时增强的 GPT-4 模型,提炼出了有关全球应用债换自然(DNS)的综合数据集,这是一种用于环境保护的重要金融工具。我们的分析包括 195 个国家,发现 21 个尚未使用过债换自然的国家是债换自然的主要候选国。其中很大一部分国家表现出对环境保护融资的一贯承诺(与历史互换记录相比,准确率达到 0.86)。相反,有 35 个在 2010 年之前曾积极参与 DNS 的国家后来被认定为不适合 DNS。值得注意的是,阿根廷正努力应对飙升的通货膨胀和严重的主权债务危机,而波兰则实现了经济稳定,并获得了欧盟保护基金的替代资金,这些国家都是适宜性不断变化的典范。研究结果表明,在经济和政治动荡的情况下,DNS 作为一种保护战略是脆弱的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analyzing global utilization and missed opportunities in debt-for-nature swaps with generative AI
We deploy a prompt-augmented GPT-4 model to distill comprehensive datasets on the global application of debt-for-nature swaps (DNS), a pivotal financial tool for environmental conservation. Our analysis includes 195 nations and identifies 21 countries that have not yet used DNS before as prime candidates for DNS. A significant proportion demonstrates consistent commitments to conservation finance (0.86 accuracy as compared to historical swaps records). Conversely, 35 countries previously active in DNS before 2010 have since been identified as unsuitable. Notably, Argentina, grappling with soaring inflation and a substantial sovereign debt crisis, and Poland, which has achieved economic stability and gained access to alternative EU conservation funds, exemplify the shifting suitability landscape. The study's outcomes illuminate the fragility of DNS as a conservation strategy amid economic and political volatility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Using synthetic dataset for semantic segmentation of the human body in the problem of extracting anthropometric data Enhancing educational Q&A systems using a Chaotic Fuzzy Logic-Augmented large language model AI can empower agriculture for global food security: challenges and prospects in developing nations Examining the impact of green technological specialization and the integration of AI technologies on green innovation performance: evidence from China Expandable-RCNN: toward high-efficiency incremental few-shot object detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1