利用中心再现内核学习

Chendi Wang, Xin Guo, Qiang Wu
{"title":"利用中心再现内核学习","authors":"Chendi Wang, Xin Guo, Qiang Wu","doi":"10.1142/s0219530523400018","DOIUrl":null,"url":null,"abstract":"Kernel-based learning algorithms have been extensively studied over the past two decades for their successful applications in scientific research and industrial problem-solving. In classical kernel methods, such as kernel ridge regression and support vector machines, an unregularized offset term naturally appears. While its importance can be defended in some situations, it is arguable in others. However, it is commonly agreed that the offset term introduces essential challenges to the optimization and theoretical analysis of the algorithms. In this paper, we demonstrate that Kernel Ridge Regression (KRR) with an offset is closely connected to regularization schemes involving centered reproducing kernels. With the aid of this connection and the theory of centered reproducing kernels, we will establish generalization error bounds for KRR with an offset. These bounds indicate that the algorithm can achieve minimax optimal rates.","PeriodicalId":503529,"journal":{"name":"Analysis and Applications","volume":"32 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning with centered reproducing kernels\",\"authors\":\"Chendi Wang, Xin Guo, Qiang Wu\",\"doi\":\"10.1142/s0219530523400018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kernel-based learning algorithms have been extensively studied over the past two decades for their successful applications in scientific research and industrial problem-solving. In classical kernel methods, such as kernel ridge regression and support vector machines, an unregularized offset term naturally appears. While its importance can be defended in some situations, it is arguable in others. However, it is commonly agreed that the offset term introduces essential challenges to the optimization and theoretical analysis of the algorithms. In this paper, we demonstrate that Kernel Ridge Regression (KRR) with an offset is closely connected to regularization schemes involving centered reproducing kernels. With the aid of this connection and the theory of centered reproducing kernels, we will establish generalization error bounds for KRR with an offset. These bounds indicate that the algorithm can achieve minimax optimal rates.\",\"PeriodicalId\":503529,\"journal\":{\"name\":\"Analysis and Applications\",\"volume\":\"32 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219530523400018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219530523400018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

过去二十年来,基于核的学习算法在科学研究和工业问题解决中得到了成功应用,并得到了广泛的研究。在核脊回归和支持向量机等经典核方法中,自然会出现非规则化偏移项。虽然它的重要性在某些情况下可以得到辩护,但在另一些情况下却值得商榷。不过,人们普遍认为,偏移项给算法的优化和理论分析带来了重大挑战。在本文中,我们证明了带偏移的核岭回归(KRR)与涉及中心再现核的正则化方案密切相关。借助这种联系和居中再现核理论,我们将为带偏移的 KRR 建立广义误差边界。这些界限表明,该算法可以达到最小最优率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning with centered reproducing kernels
Kernel-based learning algorithms have been extensively studied over the past two decades for their successful applications in scientific research and industrial problem-solving. In classical kernel methods, such as kernel ridge regression and support vector machines, an unregularized offset term naturally appears. While its importance can be defended in some situations, it is arguable in others. However, it is commonly agreed that the offset term introduces essential challenges to the optimization and theoretical analysis of the algorithms. In this paper, we demonstrate that Kernel Ridge Regression (KRR) with an offset is closely connected to regularization schemes involving centered reproducing kernels. With the aid of this connection and the theory of centered reproducing kernels, we will establish generalization error bounds for KRR with an offset. These bounds indicate that the algorithm can achieve minimax optimal rates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Continuous solutions for a two-dimensional cross-diffusion problem involving doubly degenerate diffusion and logistic proliferation Local Well-posedness of a Viscoelastic Fluid Model for Reactive Polymers Global Weak Solutions to a Nonlinear Chemotaxis System with Singular Density-Suppressed Motility Uniform Boundary Estimates for Neumann Problems in Parabolic Homogenization On Choosing Initial Values of Iteratively Reweighted ℓ1 Algorithms for the Piece-wise Exponential Penalty
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1