{"title":"整合电磁、电阻率和生产测井数据,在异质碳酸盐岩储层中利用树状集合算法验证岩性和渗透率预测模型","authors":"W. Al-Mudhafar, Mohammed A. Abbas, David A. Wood","doi":"10.1144/petgeo2023-067","DOIUrl":null,"url":null,"abstract":"This study develops an innovative workflow to identify discrete lithofacies distributions with respect to the well-log records exploiting two tree-based ensemble learning algorithms: extreme gradient boosting (XGBoost) and adaptive boosting (AdaBoost). In the next step, the predicted discrete lithofacies distribution is further assessed with well-log data using an XGBoost regression to predict reservoir permeability. The input well logging records are gamma ray, neutron porosity, bulk density, compressional slowness and deep and shallow resistivity. These data originate in a carbonate reservoir at the Mishrif basin of southern Iraq's oil field. To achieve solid prediction of lithofacies permeability, random subsampling cross-validation was applied to the originated dataset to formulate two subsets, training for model tuning and testing for prediction of subsets that are not observed during model training. The values of total correct percentage (TCP) of lithofacies predictions for the entire dataset and testing subset were 98% and 93% by the XGBoost algorithm; and 97% and 89% using the AdaBoost classifier, respectively. The XGBoost predictive models led to attain the least uncertain lithofacies and permeability records of the cored data. For further validation, the predicted lithofacies and reservoir permeability were then compared with the porosity-permeability values derived from the Nuclear-Magnetic Resonance (NMR) log, the secondary porosity of the Full-bore Micro Imager (FMI) and the production contribution from the Production-Logging Tool (PLT). Therefore, it is believed that the XGBoost model is capable of making accurate predictions of lithofacies and permeability for the same well's non-cored intervals and other non-cored wells in the investigated reservoir.","PeriodicalId":49704,"journal":{"name":"Petroleum Geoscience","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integration of electromagnetic, resistivity-based, and production logging data for validating lithofacies and permeability predictive models with tree ensemble algorithms in heterogeneous carbonate reservoirs\",\"authors\":\"W. Al-Mudhafar, Mohammed A. Abbas, David A. Wood\",\"doi\":\"10.1144/petgeo2023-067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study develops an innovative workflow to identify discrete lithofacies distributions with respect to the well-log records exploiting two tree-based ensemble learning algorithms: extreme gradient boosting (XGBoost) and adaptive boosting (AdaBoost). In the next step, the predicted discrete lithofacies distribution is further assessed with well-log data using an XGBoost regression to predict reservoir permeability. The input well logging records are gamma ray, neutron porosity, bulk density, compressional slowness and deep and shallow resistivity. These data originate in a carbonate reservoir at the Mishrif basin of southern Iraq's oil field. To achieve solid prediction of lithofacies permeability, random subsampling cross-validation was applied to the originated dataset to formulate two subsets, training for model tuning and testing for prediction of subsets that are not observed during model training. The values of total correct percentage (TCP) of lithofacies predictions for the entire dataset and testing subset were 98% and 93% by the XGBoost algorithm; and 97% and 89% using the AdaBoost classifier, respectively. The XGBoost predictive models led to attain the least uncertain lithofacies and permeability records of the cored data. For further validation, the predicted lithofacies and reservoir permeability were then compared with the porosity-permeability values derived from the Nuclear-Magnetic Resonance (NMR) log, the secondary porosity of the Full-bore Micro Imager (FMI) and the production contribution from the Production-Logging Tool (PLT). Therefore, it is believed that the XGBoost model is capable of making accurate predictions of lithofacies and permeability for the same well's non-cored intervals and other non-cored wells in the investigated reservoir.\",\"PeriodicalId\":49704,\"journal\":{\"name\":\"Petroleum Geoscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum Geoscience\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1144/petgeo2023-067\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Geoscience","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1144/petgeo2023-067","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Integration of electromagnetic, resistivity-based, and production logging data for validating lithofacies and permeability predictive models with tree ensemble algorithms in heterogeneous carbonate reservoirs
This study develops an innovative workflow to identify discrete lithofacies distributions with respect to the well-log records exploiting two tree-based ensemble learning algorithms: extreme gradient boosting (XGBoost) and adaptive boosting (AdaBoost). In the next step, the predicted discrete lithofacies distribution is further assessed with well-log data using an XGBoost regression to predict reservoir permeability. The input well logging records are gamma ray, neutron porosity, bulk density, compressional slowness and deep and shallow resistivity. These data originate in a carbonate reservoir at the Mishrif basin of southern Iraq's oil field. To achieve solid prediction of lithofacies permeability, random subsampling cross-validation was applied to the originated dataset to formulate two subsets, training for model tuning and testing for prediction of subsets that are not observed during model training. The values of total correct percentage (TCP) of lithofacies predictions for the entire dataset and testing subset were 98% and 93% by the XGBoost algorithm; and 97% and 89% using the AdaBoost classifier, respectively. The XGBoost predictive models led to attain the least uncertain lithofacies and permeability records of the cored data. For further validation, the predicted lithofacies and reservoir permeability were then compared with the porosity-permeability values derived from the Nuclear-Magnetic Resonance (NMR) log, the secondary porosity of the Full-bore Micro Imager (FMI) and the production contribution from the Production-Logging Tool (PLT). Therefore, it is believed that the XGBoost model is capable of making accurate predictions of lithofacies and permeability for the same well's non-cored intervals and other non-cored wells in the investigated reservoir.
期刊介绍:
Petroleum Geoscience is the international journal of geoenergy and applied earth science, and is co-owned by the Geological Society of London and the European Association of Geoscientists and Engineers (EAGE).
Petroleum Geoscience transcends disciplinary boundaries and publishes a balanced mix of articles covering exploration, exploitation, appraisal, development and enhancement of sub-surface hydrocarbon resources and carbon repositories. The integration of disciplines in an applied context, whether for fluid production, carbon storage or related geoenergy applications, is a particular strength of the journal. Articles on enhancing exploration efficiency, lowering technological and environmental risk, and improving hydrocarbon recovery communicate the latest developments in sub-surface geoscience to a wide readership.
Petroleum Geoscience provides a multidisciplinary forum for those engaged in the science and technology of the rock-related sub-surface disciplines. The journal reaches some 8000 individual subscribers, and a further 1100 institutional subscriptions provide global access to readers including geologists, geophysicists, petroleum and reservoir engineers, petrophysicists and geochemists in both academia and industry. The journal aims to share knowledge of reservoir geoscience and to reflect the international nature of its development.