{"title":"代谢物-蛋白质相互作用与基因组尺度代谢模型的预测和整合","authors":"Mahdis Habibpour , Zahra Razaghi-Moghadam , Zoran Nikoloski","doi":"10.1016/j.ymben.2024.02.008","DOIUrl":null,"url":null,"abstract":"<div><p>Metabolites, as small molecules, can act not only as substrates to enzymes, but also as effectors of activity of proteins with different functions, thereby affecting various cellular processes. While several experimental techniques have started to catalogue the metabolite-protein interactions (MPIs) present in different cellular contexts, characterizing the functional relevance of MPIs remains a challenging problem. Computational approaches from the constrained-based modeling framework allow for predicting MPIs and integrating their effects in the <em>in silico</em> analysis of metabolic and physiological phenotypes, like cell growth. Here, we provide a classification of all existing constraint-based approaches that predict and integrate MPIs using genome-scale metabolic networks as input. In addition, we benchmark the performance of the approaches to predict MPIs in a comparative study using different features extracted from the model structure and predicted metabolic phenotypes with the state-of-the-art metabolic networks of <em>Escherichia coli</em> and <em>Saccharomyces cerevisiae.</em> Lastly, we provide an outlook for future, feasible directions to expand the consideration of MPIs in constraint-based modeling approaches with wide biotechnological applications.</p></div>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1096717624000247/pdfft?md5=8eb3485e91061c2df98c8ad0db4171c8&pid=1-s2.0-S1096717624000247-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Prediction and integration of metabolite-protein interactions with genome-scale metabolic models\",\"authors\":\"Mahdis Habibpour , Zahra Razaghi-Moghadam , Zoran Nikoloski\",\"doi\":\"10.1016/j.ymben.2024.02.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Metabolites, as small molecules, can act not only as substrates to enzymes, but also as effectors of activity of proteins with different functions, thereby affecting various cellular processes. While several experimental techniques have started to catalogue the metabolite-protein interactions (MPIs) present in different cellular contexts, characterizing the functional relevance of MPIs remains a challenging problem. Computational approaches from the constrained-based modeling framework allow for predicting MPIs and integrating their effects in the <em>in silico</em> analysis of metabolic and physiological phenotypes, like cell growth. Here, we provide a classification of all existing constraint-based approaches that predict and integrate MPIs using genome-scale metabolic networks as input. In addition, we benchmark the performance of the approaches to predict MPIs in a comparative study using different features extracted from the model structure and predicted metabolic phenotypes with the state-of-the-art metabolic networks of <em>Escherichia coli</em> and <em>Saccharomyces cerevisiae.</em> Lastly, we provide an outlook for future, feasible directions to expand the consideration of MPIs in constraint-based modeling approaches with wide biotechnological applications.</p></div>\",\"PeriodicalId\":18483,\"journal\":{\"name\":\"Metabolic engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1096717624000247/pdfft?md5=8eb3485e91061c2df98c8ad0db4171c8&pid=1-s2.0-S1096717624000247-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolic engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1096717624000247\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1096717624000247","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Prediction and integration of metabolite-protein interactions with genome-scale metabolic models
Metabolites, as small molecules, can act not only as substrates to enzymes, but also as effectors of activity of proteins with different functions, thereby affecting various cellular processes. While several experimental techniques have started to catalogue the metabolite-protein interactions (MPIs) present in different cellular contexts, characterizing the functional relevance of MPIs remains a challenging problem. Computational approaches from the constrained-based modeling framework allow for predicting MPIs and integrating their effects in the in silico analysis of metabolic and physiological phenotypes, like cell growth. Here, we provide a classification of all existing constraint-based approaches that predict and integrate MPIs using genome-scale metabolic networks as input. In addition, we benchmark the performance of the approaches to predict MPIs in a comparative study using different features extracted from the model structure and predicted metabolic phenotypes with the state-of-the-art metabolic networks of Escherichia coli and Saccharomyces cerevisiae. Lastly, we provide an outlook for future, feasible directions to expand the consideration of MPIs in constraint-based modeling approaches with wide biotechnological applications.
期刊介绍:
Metabolic Engineering (MBE) is a journal that focuses on publishing original research papers on the directed modulation of metabolic pathways for metabolite overproduction or the enhancement of cellular properties. It welcomes papers that describe the engineering of native pathways and the synthesis of heterologous pathways to convert microorganisms into microbial cell factories. The journal covers experimental, computational, and modeling approaches for understanding metabolic pathways and manipulating them through genetic, media, or environmental means. Effective exploration of metabolic pathways necessitates the use of molecular biology and biochemistry methods, as well as engineering techniques for modeling and data analysis. MBE serves as a platform for interdisciplinary research in fields such as biochemistry, molecular biology, applied microbiology, cellular physiology, cellular nutrition in health and disease, and biochemical engineering. The journal publishes various types of papers, including original research papers and review papers. It is indexed and abstracted in databases such as Scopus, Embase, EMBiology, Current Contents - Life Sciences and Clinical Medicine, Science Citation Index, PubMed/Medline, CAS and Biotechnology Citation Index.