{"title":"数据代理:评估大型语言模型回答零即时自然语言查询的能力","authors":"Manit Mishra, Abderrahman Braham, Charles Marsom, Bryan Chung, Gavin Griffin, Dakshesh Sidnerlikar, Chatanya Sarin, Arjun Rajaram","doi":"10.1109/ICAIC60265.2024.10433803","DOIUrl":null,"url":null,"abstract":"Conventional processes for analyzing datasets and extracting meaningful information are often time-consuming and laborious. Previous work has identified manual, repetitive coding and data collection as major obstacles that hinder data scientists from undertaking more nuanced labor and high-level projects. To combat this, we evaluated OpenAI’s GPT-3.5 as a \"Language Data Scientist\" (LDS) that can extrapolate key findings, including correlations and basic information, from a given dataset. The model was tested on a diverse set of benchmark datasets to evaluate its performance across multiple standards, including data science code-generation based tasks involving libraries such as NumPy, Pandas, Scikit-Learn, and TensorFlow, and was broadly successful in correctly answering a given data science query related to the benchmark dataset. The LDS used various novel prompt engineering techniques to effectively answer a given question, including Chain-of-Thought reinforcement and SayCan prompt engineering. Our findings demonstrate great potential for leveraging Large Language Models for low-level, zero-shot data analysis.","PeriodicalId":517265,"journal":{"name":"2024 IEEE 3rd International Conference on AI in Cybersecurity (ICAIC)","volume":"144 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DataAgent: Evaluating Large Language Models’ Ability to Answer Zero-Shot, Natural Language Queries\",\"authors\":\"Manit Mishra, Abderrahman Braham, Charles Marsom, Bryan Chung, Gavin Griffin, Dakshesh Sidnerlikar, Chatanya Sarin, Arjun Rajaram\",\"doi\":\"10.1109/ICAIC60265.2024.10433803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional processes for analyzing datasets and extracting meaningful information are often time-consuming and laborious. Previous work has identified manual, repetitive coding and data collection as major obstacles that hinder data scientists from undertaking more nuanced labor and high-level projects. To combat this, we evaluated OpenAI’s GPT-3.5 as a \\\"Language Data Scientist\\\" (LDS) that can extrapolate key findings, including correlations and basic information, from a given dataset. The model was tested on a diverse set of benchmark datasets to evaluate its performance across multiple standards, including data science code-generation based tasks involving libraries such as NumPy, Pandas, Scikit-Learn, and TensorFlow, and was broadly successful in correctly answering a given data science query related to the benchmark dataset. The LDS used various novel prompt engineering techniques to effectively answer a given question, including Chain-of-Thought reinforcement and SayCan prompt engineering. Our findings demonstrate great potential for leveraging Large Language Models for low-level, zero-shot data analysis.\",\"PeriodicalId\":517265,\"journal\":{\"name\":\"2024 IEEE 3rd International Conference on AI in Cybersecurity (ICAIC)\",\"volume\":\"144 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2024 IEEE 3rd International Conference on AI in Cybersecurity (ICAIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAIC60265.2024.10433803\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 IEEE 3rd International Conference on AI in Cybersecurity (ICAIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIC60265.2024.10433803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DataAgent: Evaluating Large Language Models’ Ability to Answer Zero-Shot, Natural Language Queries
Conventional processes for analyzing datasets and extracting meaningful information are often time-consuming and laborious. Previous work has identified manual, repetitive coding and data collection as major obstacles that hinder data scientists from undertaking more nuanced labor and high-level projects. To combat this, we evaluated OpenAI’s GPT-3.5 as a "Language Data Scientist" (LDS) that can extrapolate key findings, including correlations and basic information, from a given dataset. The model was tested on a diverse set of benchmark datasets to evaluate its performance across multiple standards, including data science code-generation based tasks involving libraries such as NumPy, Pandas, Scikit-Learn, and TensorFlow, and was broadly successful in correctly answering a given data science query related to the benchmark dataset. The LDS used various novel prompt engineering techniques to effectively answer a given question, including Chain-of-Thought reinforcement and SayCan prompt engineering. Our findings demonstrate great potential for leveraging Large Language Models for low-level, zero-shot data analysis.