Marjan Emzhik, Amirsajad Qaribnejad, Azadeh Haeri, Simin Dadashzadeh
{"title":"富含胆盐与不富含胆盐的纳米颗粒:它们的理化特性和释放模式的比较。","authors":"Marjan Emzhik, Amirsajad Qaribnejad, Azadeh Haeri, Simin Dadashzadeh","doi":"10.1080/10837450.2024.2320279","DOIUrl":null,"url":null,"abstract":"<p><p>Bile salts were first used in the preparation of nanoparticles due to their stabilizing effects. As time went by, they attracted much attention and were increasingly employed in fabricating nanoparticles. It is well accepted that the physicochemical properties of nanoparticles are influential factors in their permeation, distribution, elimination and degree of effectiveness as well as toxicity. The review of articles shows that the use of bile salts in the structure of nanocarriers may cause significant changes in their physicochemical properties. Hence, having information about the effect of bile salts on the properties of nanoparticles could be valuable in the design of optimal carriers. Herein, we review studies in which bile salts were used in preparing liposomes, niosomes and other nanocarriers. Furthermore, the effects of bile salts on entrapment efficiency, particle size, polydispersity index, zeta potential, release profile and stability of nanoparticles are pointed out. Finally, we debate how to take advantage of bile salts potential for preparing desirable nanocarriers.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"187-211"},"PeriodicalIF":2.6000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bile salt-enriched vs. non-enriched nanoparticles: comparison of their physicochemical characteristics and release pattern.\",\"authors\":\"Marjan Emzhik, Amirsajad Qaribnejad, Azadeh Haeri, Simin Dadashzadeh\",\"doi\":\"10.1080/10837450.2024.2320279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bile salts were first used in the preparation of nanoparticles due to their stabilizing effects. As time went by, they attracted much attention and were increasingly employed in fabricating nanoparticles. It is well accepted that the physicochemical properties of nanoparticles are influential factors in their permeation, distribution, elimination and degree of effectiveness as well as toxicity. The review of articles shows that the use of bile salts in the structure of nanocarriers may cause significant changes in their physicochemical properties. Hence, having information about the effect of bile salts on the properties of nanoparticles could be valuable in the design of optimal carriers. Herein, we review studies in which bile salts were used in preparing liposomes, niosomes and other nanocarriers. Furthermore, the effects of bile salts on entrapment efficiency, particle size, polydispersity index, zeta potential, release profile and stability of nanoparticles are pointed out. Finally, we debate how to take advantage of bile salts potential for preparing desirable nanocarriers.</p>\",\"PeriodicalId\":20004,\"journal\":{\"name\":\"Pharmaceutical Development and Technology\",\"volume\":\" \",\"pages\":\"187-211\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Development and Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10837450.2024.2320279\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Development and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10837450.2024.2320279","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Bile salt-enriched vs. non-enriched nanoparticles: comparison of their physicochemical characteristics and release pattern.
Bile salts were first used in the preparation of nanoparticles due to their stabilizing effects. As time went by, they attracted much attention and were increasingly employed in fabricating nanoparticles. It is well accepted that the physicochemical properties of nanoparticles are influential factors in their permeation, distribution, elimination and degree of effectiveness as well as toxicity. The review of articles shows that the use of bile salts in the structure of nanocarriers may cause significant changes in their physicochemical properties. Hence, having information about the effect of bile salts on the properties of nanoparticles could be valuable in the design of optimal carriers. Herein, we review studies in which bile salts were used in preparing liposomes, niosomes and other nanocarriers. Furthermore, the effects of bile salts on entrapment efficiency, particle size, polydispersity index, zeta potential, release profile and stability of nanoparticles are pointed out. Finally, we debate how to take advantage of bile salts potential for preparing desirable nanocarriers.
期刊介绍:
Pharmaceutical Development & Technology publishes research on the design, development, manufacture, and evaluation of conventional and novel drug delivery systems, emphasizing practical solutions and applications to theoretical and research-based problems. The journal aims to publish significant, innovative and original research to advance the frontiers of pharmaceutical development and technology.
Through original articles, reviews (where prior discussion with the EIC is encouraged), short reports, book reviews and technical notes, Pharmaceutical Development & Technology covers aspects such as:
-Preformulation and pharmaceutical formulation studies
-Pharmaceutical materials selection and characterization
-Pharmaceutical process development, engineering, scale-up and industrialisation, and process validation
-QbD in the form a risk assessment and DoE driven approaches
-Design of dosage forms and drug delivery systems
-Emerging pharmaceutical formulation and drug delivery technologies with a focus on personalised therapies
-Drug delivery systems research and quality improvement
-Pharmaceutical regulatory affairs
This journal will not consider for publication manuscripts focusing purely on clinical evaluations, botanicals, or animal models.