用于诊断 COVID-19 肺炎的胸部 X 光图像纹理分析。

Polish journal of radiology Pub Date : 2024-01-25 eCollection Date: 2024-01-01 DOI:10.5114/pjr.2024.134818
Waldemar Leszczyński, Wojciech Kazimierczak, Adam Lemanowicz, Zbigniew Serafin
{"title":"用于诊断 COVID-19 肺炎的胸部 X 光图像纹理分析。","authors":"Waldemar Leszczyński, Wojciech Kazimierczak, Adam Lemanowicz, Zbigniew Serafin","doi":"10.5114/pjr.2024.134818","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Medical imaging is one of the main methods of diagnosing COVID-19, along with real-time reverse trans-cription-polymerase chain reaction (RT-PCR) tests. The purpose of the study was to analyse the texture parameters of chest X-rays (CXR) of patients suspected of having COVID-19.</p><p><strong>Material and methods: </strong>Texture parameters of the CXRs of 70 patients with symptoms typical of COVID-19 infection were analysed using LIFEx software. The regions of interest (ROIs) included each lung separately, for which 57 para-meters were tested. The control group consisted of 30 healthy, age-matched patients with no pathological findings in CXRs.</p><p><strong>Results: </strong>According to the ROC analysis, 13 of the tested parameters differentiate the radiological image of lungs with COVID-19 features from the image of healthy lungs: GLRLM_LRHGE (AUC 0.91); DISCRETIZED_Q3 (AUC 0.90); GLZLM_HGZE (AUC 0.90); GLRLM_HGRE (AUC 0.89); DISCRETIZED_mean (AUC 0.89); DISCRETIZED_Q2 (AUC 0.61); GLRLM_SRHGE (AUC 0.87); GLZLM_LZHGE (AUC 0.87); GLZLM_SZHGE (AUC 0.84); DISCRETIZED_Q1 (AUC 0.81); NGLDM_Coarseness (AUC 0.70); DISCRETIZED_std (AUC 0.64); CONVENTIONAL_Q2 (AUC 0.61).</p><p><strong>Conclusions: </strong>Selected texture parameters of radiological CXRs make it possible to distinguish COVID-19 features from healthy ones.</p>","PeriodicalId":94174,"journal":{"name":"Polish journal of radiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10867972/pdf/","citationCount":"0","resultStr":"{\"title\":\"Texture analysis of chest X-ray images for the diagnosis of COVID-19 pneumonia.\",\"authors\":\"Waldemar Leszczyński, Wojciech Kazimierczak, Adam Lemanowicz, Zbigniew Serafin\",\"doi\":\"10.5114/pjr.2024.134818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Medical imaging is one of the main methods of diagnosing COVID-19, along with real-time reverse trans-cription-polymerase chain reaction (RT-PCR) tests. The purpose of the study was to analyse the texture parameters of chest X-rays (CXR) of patients suspected of having COVID-19.</p><p><strong>Material and methods: </strong>Texture parameters of the CXRs of 70 patients with symptoms typical of COVID-19 infection were analysed using LIFEx software. The regions of interest (ROIs) included each lung separately, for which 57 para-meters were tested. The control group consisted of 30 healthy, age-matched patients with no pathological findings in CXRs.</p><p><strong>Results: </strong>According to the ROC analysis, 13 of the tested parameters differentiate the radiological image of lungs with COVID-19 features from the image of healthy lungs: GLRLM_LRHGE (AUC 0.91); DISCRETIZED_Q3 (AUC 0.90); GLZLM_HGZE (AUC 0.90); GLRLM_HGRE (AUC 0.89); DISCRETIZED_mean (AUC 0.89); DISCRETIZED_Q2 (AUC 0.61); GLRLM_SRHGE (AUC 0.87); GLZLM_LZHGE (AUC 0.87); GLZLM_SZHGE (AUC 0.84); DISCRETIZED_Q1 (AUC 0.81); NGLDM_Coarseness (AUC 0.70); DISCRETIZED_std (AUC 0.64); CONVENTIONAL_Q2 (AUC 0.61).</p><p><strong>Conclusions: </strong>Selected texture parameters of radiological CXRs make it possible to distinguish COVID-19 features from healthy ones.</p>\",\"PeriodicalId\":94174,\"journal\":{\"name\":\"Polish journal of radiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10867972/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polish journal of radiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5114/pjr.2024.134818\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish journal of radiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5114/pjr.2024.134818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:医学成像与实时反转录聚合酶链反应(RT-PCR)检测是诊断 COVID-19 的主要方法之一。本研究旨在分析疑似 COVID-19 患者胸部 X 光片(CXR)的纹理参数:使用 LIFEx 软件分析了 70 名具有 COVID-19 感染典型症状的患者的 CXR 纹理参数。感兴趣区(ROI)包括每个肺部,共测试了 57 段米。对照组由 30 名健康、年龄匹配、CXR 无病理结果的患者组成:结果:根据 ROC 分析,13 个测试参数可将具有 COVID-19 特征的肺部放射图像与健康肺部图像区分开来:GLRLM_LRHGE(AUC 0.91);DISCRETIZED_Q3(AUC 0.90);GLZLM_HGZE(AUC 0.90);GLRLM_HGRE(AUC 0.89);DISCRETIZED_mean(AUC 0.89);DISCRETIZED_Q2(AUC 0.61);GLRLM_SRHGE(AUC 0.87);GLZLM_LZHGE(AUC 0.87);GLZLM_SZHGE(AUC 0.84);DISCRETIZED_Q1(AUC 0.81);NGLDM_Coarseness(AUC 0.70);DISCRETIZED_std(AUC 0.64);CONVENTIONAL_Q2(AUC 0.61).结论:结论:放射学 CXR 图像的部分纹理参数可将 COVID-19 特征与健康特征区分开来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Texture analysis of chest X-ray images for the diagnosis of COVID-19 pneumonia.

Purpose: Medical imaging is one of the main methods of diagnosing COVID-19, along with real-time reverse trans-cription-polymerase chain reaction (RT-PCR) tests. The purpose of the study was to analyse the texture parameters of chest X-rays (CXR) of patients suspected of having COVID-19.

Material and methods: Texture parameters of the CXRs of 70 patients with symptoms typical of COVID-19 infection were analysed using LIFEx software. The regions of interest (ROIs) included each lung separately, for which 57 para-meters were tested. The control group consisted of 30 healthy, age-matched patients with no pathological findings in CXRs.

Results: According to the ROC analysis, 13 of the tested parameters differentiate the radiological image of lungs with COVID-19 features from the image of healthy lungs: GLRLM_LRHGE (AUC 0.91); DISCRETIZED_Q3 (AUC 0.90); GLZLM_HGZE (AUC 0.90); GLRLM_HGRE (AUC 0.89); DISCRETIZED_mean (AUC 0.89); DISCRETIZED_Q2 (AUC 0.61); GLRLM_SRHGE (AUC 0.87); GLZLM_LZHGE (AUC 0.87); GLZLM_SZHGE (AUC 0.84); DISCRETIZED_Q1 (AUC 0.81); NGLDM_Coarseness (AUC 0.70); DISCRETIZED_std (AUC 0.64); CONVENTIONAL_Q2 (AUC 0.61).

Conclusions: Selected texture parameters of radiological CXRs make it possible to distinguish COVID-19 features from healthy ones.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
期刊最新文献
Advancing radiology education for medical students: leveraging digital tools and resources. Application of ultrasound-guided intranodal lymphangiography in the diagnosis and treatment of chylous ascites after abdominal surgery. Medication-induced changes on magnetic resonance imaging of the brain. The peritumoral brain zone in glioblastoma: a review of the pretreatment approach. Comparative efficacy of contrast-enhanced ultrasound versus B-mode ultrasound in the diagnosis and monitoring of hepatic abscesses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1