用基于塑化聚氯乙烯的磺酸阳离子交换剂去除溶液中的 Ca(II) 和 Mg(II) 离子

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-03-03 DOI:10.1080/10426507.2024.2315530
Davron Bekchanov , Mukhtar Mukhamediev , Murod Juraev , Rasim Alosmanov
{"title":"用基于塑化聚氯乙烯的磺酸阳离子交换剂去除溶液中的 Ca(II) 和 Mg(II) 离子","authors":"Davron Bekchanov ,&nbsp;Mukhtar Mukhamediev ,&nbsp;Murod Juraev ,&nbsp;Rasim Alosmanov","doi":"10.1080/10426507.2024.2315530","DOIUrl":null,"url":null,"abstract":"<div><p>The ion-exchange material was obtained by oxidation of the product of the interaction of polyvinyl chloride with an aqueous solution of calcium polysulfide. The structure of the resulting cation exchanger and metal-containing hybrid material was identified by IR spectroscopy and elemental analysis. The kinetics of absorption of metal ions in cation exchange resin was analyzed by using pseudo-first and pseudo-second order models. The rate constants in the adsorption process were calculated. According to the correlation coefficient, it was determined that the sorption process proceeds according to the laws of a pseudo-second order reaction. Based on the equilibrium sorption it was evaluated according to the isotherm models of Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich (D-R). The results showed that the absorption of Ca<sup>2+</sup> and Mg<sup>2+</sup> ions from aqueous solutions in cation exchange resin displays the best accordance with the Langmuir monomolecular theory. In addition, the results showed that the cation exchanger (PVC-SO<sub>3</sub>H) effectively cleans river water from Ca<sup>2+</sup> and Mg<sup>2+</sup> ions for industrial enterprises.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Removal of Ca(II) and Mg(II) ions from solutions to sulfonic cation exchanger based on plasticized polyvinylchloride\",\"authors\":\"Davron Bekchanov ,&nbsp;Mukhtar Mukhamediev ,&nbsp;Murod Juraev ,&nbsp;Rasim Alosmanov\",\"doi\":\"10.1080/10426507.2024.2315530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The ion-exchange material was obtained by oxidation of the product of the interaction of polyvinyl chloride with an aqueous solution of calcium polysulfide. The structure of the resulting cation exchanger and metal-containing hybrid material was identified by IR spectroscopy and elemental analysis. The kinetics of absorption of metal ions in cation exchange resin was analyzed by using pseudo-first and pseudo-second order models. The rate constants in the adsorption process were calculated. According to the correlation coefficient, it was determined that the sorption process proceeds according to the laws of a pseudo-second order reaction. Based on the equilibrium sorption it was evaluated according to the isotherm models of Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich (D-R). The results showed that the absorption of Ca<sup>2+</sup> and Mg<sup>2+</sup> ions from aqueous solutions in cation exchange resin displays the best accordance with the Langmuir monomolecular theory. In addition, the results showed that the cation exchanger (PVC-SO<sub>3</sub>H) effectively cleans river water from Ca<sup>2+</sup> and Mg<sup>2+</sup> ions for industrial enterprises.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1042650724000029\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1042650724000029","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

这种离子交换材料是通过氧化聚氯乙烯与聚硫化钙水溶液相互作用的产物而获得的。所产生的阳离子交换材料的结构是由聚氯乙烯与聚硫化钙水溶液相互作用的产物氧化而成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Removal of Ca(II) and Mg(II) ions from solutions to sulfonic cation exchanger based on plasticized polyvinylchloride

The ion-exchange material was obtained by oxidation of the product of the interaction of polyvinyl chloride with an aqueous solution of calcium polysulfide. The structure of the resulting cation exchanger and metal-containing hybrid material was identified by IR spectroscopy and elemental analysis. The kinetics of absorption of metal ions in cation exchange resin was analyzed by using pseudo-first and pseudo-second order models. The rate constants in the adsorption process were calculated. According to the correlation coefficient, it was determined that the sorption process proceeds according to the laws of a pseudo-second order reaction. Based on the equilibrium sorption it was evaluated according to the isotherm models of Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich (D-R). The results showed that the absorption of Ca2+ and Mg2+ ions from aqueous solutions in cation exchange resin displays the best accordance with the Langmuir monomolecular theory. In addition, the results showed that the cation exchanger (PVC-SO3H) effectively cleans river water from Ca2+ and Mg2+ ions for industrial enterprises.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Mentorship in academic musculoskeletal radiology: perspectives from a junior faculty member. Underlying synovial sarcoma undiagnosed for more than 20 years in a patient with regional pain: a case report. Sacrococcygeal chordoma with spontaneous regression due to a large hemorrhagic component. Associations of cumulative voriconazole dose, treatment duration, and alkaline phosphatase with voriconazole-induced periostitis. Can the presence of SLAP-5 lesions be predicted by using the critical shoulder angle in traumatic anterior shoulder instability?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1