流体-硬球相互作用随时间变化的运动稳定性

IF 1.2 3区 数学 Q2 MATHEMATICS, APPLIED Journal of Mathematical Fluid Mechanics Pub Date : 2024-02-19 DOI:10.1007/s00021-024-00854-7
Toshiaki Hishida
{"title":"流体-硬球相互作用随时间变化的运动稳定性","authors":"Toshiaki Hishida","doi":"10.1007/s00021-024-00854-7","DOIUrl":null,"url":null,"abstract":"<div><p>We aim at the stability of time-dependent motions, such as time-periodic ones, of a rigid body in a viscous fluid filling the exterior to it in 3D. The fluid motion obeys the incompressible Navier–Stokes system, whereas the motion of the body is governed by the balance for linear and angular momentum. Both motions are affected by each other at the boundary. Assuming that the rigid body is a ball, we adopt a monolithic approach to deduce <span>\\(L^q\\)</span>–<span>\\(L^r\\)</span> decay estimates of solutions to a non-autonomous linearized system. We then apply those estimates to the full nonlinear initial value problem to find temporal decay properties of the disturbance. Although the shape of the body is not allowed to be arbitrary, the present contribution is the first attempt at analysis of the large time behavior of solutions around nontrivial basic states, that can be time-dependent, for the fluid–structure interaction problem and provides us with a stability theorem which is indeed new even for steady motions under the self-propelling condition or with wake structure.</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"26 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00021-024-00854-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Stability of Time-Dependent Motions for Fluid–Rigid Ball Interaction\",\"authors\":\"Toshiaki Hishida\",\"doi\":\"10.1007/s00021-024-00854-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We aim at the stability of time-dependent motions, such as time-periodic ones, of a rigid body in a viscous fluid filling the exterior to it in 3D. The fluid motion obeys the incompressible Navier–Stokes system, whereas the motion of the body is governed by the balance for linear and angular momentum. Both motions are affected by each other at the boundary. Assuming that the rigid body is a ball, we adopt a monolithic approach to deduce <span>\\\\(L^q\\\\)</span>–<span>\\\\(L^r\\\\)</span> decay estimates of solutions to a non-autonomous linearized system. We then apply those estimates to the full nonlinear initial value problem to find temporal decay properties of the disturbance. Although the shape of the body is not allowed to be arbitrary, the present contribution is the first attempt at analysis of the large time behavior of solutions around nontrivial basic states, that can be time-dependent, for the fluid–structure interaction problem and provides us with a stability theorem which is indeed new even for steady motions under the self-propelling condition or with wake structure.</p></div>\",\"PeriodicalId\":649,\"journal\":{\"name\":\"Journal of Mathematical Fluid Mechanics\",\"volume\":\"26 2\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00021-024-00854-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Fluid Mechanics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00021-024-00854-7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Fluid Mechanics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-024-00854-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们的目标是研究三维空间中刚体在充满外部的粘性流体中随时间变化的运动(如时间周期运动)的稳定性。流体运动服从不可压缩的纳维-斯托克斯系统,而物体运动则受线性动量和角动量平衡的支配。两种运动在边界处相互影响。假定刚体是一个球,我们采用整体方法推导出非自治线性化系统解的(L^q\)-(L^r\)衰减估计值。然后,我们将这些估计值应用于完整的非线性初值问题,以找到扰动的时间衰减特性。虽然不允许物体的形状是任意的,但本研究首次尝试分析流固耦合问题中围绕非微分基本状态的解的大时间行为,这些基本状态可以是随时间变化的,并为我们提供了一个稳定定理,即使对于自推进条件下的稳定运动或有尾流结构的稳定运动,这也是一个新的稳定定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stability of Time-Dependent Motions for Fluid–Rigid Ball Interaction

We aim at the stability of time-dependent motions, such as time-periodic ones, of a rigid body in a viscous fluid filling the exterior to it in 3D. The fluid motion obeys the incompressible Navier–Stokes system, whereas the motion of the body is governed by the balance for linear and angular momentum. Both motions are affected by each other at the boundary. Assuming that the rigid body is a ball, we adopt a monolithic approach to deduce \(L^q\)\(L^r\) decay estimates of solutions to a non-autonomous linearized system. We then apply those estimates to the full nonlinear initial value problem to find temporal decay properties of the disturbance. Although the shape of the body is not allowed to be arbitrary, the present contribution is the first attempt at analysis of the large time behavior of solutions around nontrivial basic states, that can be time-dependent, for the fluid–structure interaction problem and provides us with a stability theorem which is indeed new even for steady motions under the self-propelling condition or with wake structure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
15.40%
发文量
97
审稿时长
>12 weeks
期刊介绍: The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.
期刊最新文献
Global Attractor and Singular Limits of the 3D Voigt-regularized Magnetohydrodynamic Equations Existence of Orthogonal Domain walls in Bénard-Rayleigh Convection Exact Solution and Instability for Saturn’s Stratified Circumpolar Atmospheric Flow Global Classical Solution to the Strip Problem of 2D Compressible Navier–Stokes System with Vacuum and Large Initial Data Ill-Posedness for the Cauchy Problem of the Modified Camassa-Holm Equation in \(B_{\infty ,1}^0\)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1