利用高斯噪声数据增强和 k 倍交叉验证优化神经计算,对喷雾干燥脱硫进行精确预测。

IF 1.9 4区 环境科学与生态学 Q4 ENGINEERING, ENVIRONMENTAL Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering Pub Date : 2024-01-01 Epub Date: 2024-02-19 DOI:10.1080/10934529.2024.2317670
Robert Someo Makomere, Lawrence Koech, Hilary Limo Rutto, Sammy Kiambi
{"title":"利用高斯噪声数据增强和 k 倍交叉验证优化神经计算,对喷雾干燥脱硫进行精确预测。","authors":"Robert Someo Makomere, Lawrence Koech, Hilary Limo Rutto, Sammy Kiambi","doi":"10.1080/10934529.2024.2317670","DOIUrl":null,"url":null,"abstract":"<p><p>Perceptron models have become integral tools for pattern recognition and classification problems in engineering fields. This study envisioned implementing artificial neural networks to forecast the performance of a mini-spray dryer for desulfurization activities. This work adopted k-fold cross-validation, a rigorous technique that evaluates model performance across multiple data segments. Several ANN models (21) were trained on data obtained from sulfation conditions, including sulfation temperature (120 °C-200 °C), slurry pH (4-12), stoichiometric ratio (0.5-2.5), slurry solid concentration (6%-14%) as the feed input and sulfur capture as the response. Three hundred synthetic datasets generated using the Gaussian noise data augmentation underwent a 10-fold cross-validation process before simulation on neural networks triggered by the logsig and tansig activation functions. The computation accuracy was further evaluated by altering the number of hidden cells from 2 to 10. The ANN architectures were assessed using statistical metrics such as mean square error (MSE), root mean square error (RMSE), mean absolute percentage error (MAPE), and the coefficient of determination (<i>R</i><sup>2</sup>) techniques. Overall, error estimation suggests cross-validation and data augmentation are critical in efficient neural network generalization. The logsig function trained with 10 hidden cells presented closer data articulation when mapped onto actual values.</p>","PeriodicalId":15671,"journal":{"name":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","volume":" ","pages":"1-14"},"PeriodicalIF":1.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Precision forecasting of spray-dry desulfurization using Gaussian noise data augmentation and k-fold cross-validation optimized neural computing.\",\"authors\":\"Robert Someo Makomere, Lawrence Koech, Hilary Limo Rutto, Sammy Kiambi\",\"doi\":\"10.1080/10934529.2024.2317670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Perceptron models have become integral tools for pattern recognition and classification problems in engineering fields. This study envisioned implementing artificial neural networks to forecast the performance of a mini-spray dryer for desulfurization activities. This work adopted k-fold cross-validation, a rigorous technique that evaluates model performance across multiple data segments. Several ANN models (21) were trained on data obtained from sulfation conditions, including sulfation temperature (120 °C-200 °C), slurry pH (4-12), stoichiometric ratio (0.5-2.5), slurry solid concentration (6%-14%) as the feed input and sulfur capture as the response. Three hundred synthetic datasets generated using the Gaussian noise data augmentation underwent a 10-fold cross-validation process before simulation on neural networks triggered by the logsig and tansig activation functions. The computation accuracy was further evaluated by altering the number of hidden cells from 2 to 10. The ANN architectures were assessed using statistical metrics such as mean square error (MSE), root mean square error (RMSE), mean absolute percentage error (MAPE), and the coefficient of determination (<i>R</i><sup>2</sup>) techniques. Overall, error estimation suggests cross-validation and data augmentation are critical in efficient neural network generalization. The logsig function trained with 10 hidden cells presented closer data articulation when mapped onto actual values.</p>\",\"PeriodicalId\":15671,\"journal\":{\"name\":\"Journal of Environmental Science and Health Part A-toxic\\\\/hazardous Substances & Environmental Engineering\",\"volume\":\" \",\"pages\":\"1-14\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Science and Health Part A-toxic\\\\/hazardous Substances & Environmental Engineering\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/10934529.2024.2317670\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10934529.2024.2317670","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/19 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

感知器模型已成为工程领域模式识别和分类问题不可或缺的工具。本研究设想采用人工神经网络来预测脱硫活动中微型喷雾干燥器的性能。这项工作采用了 k 倍交叉验证,这是一种在多个数据段中评估模型性能的严格技术。根据硫化条件获得的数据,包括硫化温度(120 ℃-200 ℃)、浆液 pH 值(4-12)、化学计量比(0.5-2.5)、作为输入的浆液固体浓度(6%-14%)和作为响应的硫捕获量,对多个 ANN 模型(21)进行了训练。在使用 logsig 和 tansig 激活函数对神经网络进行模拟之前,利用高斯噪声数据增强生成的 300 个合成数据集经过了 10 倍交叉验证过程。通过将隐藏单元的数量从 2 个改为 10 个,进一步评估了计算精度。使用均方误差 (MSE)、均方根误差 (RMSE)、平均绝对百分比误差 (MAPE) 和判定系数 (R2) 等统计指标对 ANN 架构进行了评估。总之,误差估计表明,交叉验证和数据扩充对高效的神经网络泛化至关重要。使用 10 个隐藏单元训练的 logsig 函数在映射到实际值时,数据衔接更为紧密。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Precision forecasting of spray-dry desulfurization using Gaussian noise data augmentation and k-fold cross-validation optimized neural computing.

Perceptron models have become integral tools for pattern recognition and classification problems in engineering fields. This study envisioned implementing artificial neural networks to forecast the performance of a mini-spray dryer for desulfurization activities. This work adopted k-fold cross-validation, a rigorous technique that evaluates model performance across multiple data segments. Several ANN models (21) were trained on data obtained from sulfation conditions, including sulfation temperature (120 °C-200 °C), slurry pH (4-12), stoichiometric ratio (0.5-2.5), slurry solid concentration (6%-14%) as the feed input and sulfur capture as the response. Three hundred synthetic datasets generated using the Gaussian noise data augmentation underwent a 10-fold cross-validation process before simulation on neural networks triggered by the logsig and tansig activation functions. The computation accuracy was further evaluated by altering the number of hidden cells from 2 to 10. The ANN architectures were assessed using statistical metrics such as mean square error (MSE), root mean square error (RMSE), mean absolute percentage error (MAPE), and the coefficient of determination (R2) techniques. Overall, error estimation suggests cross-validation and data augmentation are critical in efficient neural network generalization. The logsig function trained with 10 hidden cells presented closer data articulation when mapped onto actual values.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
4.80%
发文量
93
审稿时长
3.0 months
期刊介绍: 14 issues per year Abstracted/indexed in: BioSciences Information Service of Biological Abstracts (BIOSIS), CAB ABSTRACTS, CEABA, Chemical Abstracts & Chemical Safety NewsBase, Current Contents/Agriculture, Biology, and Environmental Sciences, Elsevier BIOBASE/Current Awareness in Biological Sciences, EMBASE/Excerpta Medica, Engineering Index/COMPENDEX PLUS, Environment Abstracts, Environmental Periodicals Bibliography & INIST-Pascal/CNRS, National Agriculture Library-AGRICOLA, NIOSHTIC & Pollution Abstracts, PubSCIENCE, Reference Update, Research Alert & Science Citation Index Expanded (SCIE), Water Resources Abstracts and Index Medicus/MEDLINE.
期刊最新文献
Analyzing the interactions between 2-ethylhexyl 4-methoxycinnamate and bovine serum albumin under coexistence and encapsulation of β-cyclodextrin. Application of machine learning for environmentally friendly advancement: exploring biomass-derived materials in wastewater treatment and agricultural sector - a review. Synchronously degradation of biogas slurry and decarbonization of biogas using microbial fuel cells. Application of supervised learning models for enhanced lead (II) removal from wastewater via modified cellulose nanocrystals (CNCs). Municipal anaerobic filter effluent treatment using advanced oxidation processes for potential use in unrestricted crop production.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1