多模态皮层神经元细胞类型分类。

IF 2.9 4区 医学 Q2 PHYSIOLOGY Pflugers Archiv : European journal of physiology Pub Date : 2024-05-01 Epub Date: 2024-02-20 DOI:10.1007/s00424-024-02923-2
Xiaoyi Mao, Jochen F Staiger
{"title":"多模态皮层神经元细胞类型分类。","authors":"Xiaoyi Mao, Jochen F Staiger","doi":"10.1007/s00424-024-02923-2","DOIUrl":null,"url":null,"abstract":"<p><p>Since more than a century, neuroscientists have distinguished excitatory (glutamatergic) neurons with long-distance projections from inhibitory (GABAergic) neurons with local projections and established layer-dependent schemes for the ~ 80% excitatory (principal) cells as well as the ~ 20% inhibitory neurons. Whereas, in the early days, mainly morphological criteria were used to define cell types, later supplemented by electrophysiological and neurochemical properties, nowadays. single-cell transcriptomics is the method of choice for cell type classification. Bringing recent insight together, we conclude that despite all established layer- and area-dependent differences, there is a set of reliably identifiable cortical cell types that were named (among others) intratelencephalic (IT), extratelencephalic (ET), and corticothalamic (CT) for the excitatory cells, which altogether comprise ~ 56 transcriptomic cell types (t-types). By the same means, inhibitory neurons were subdivided into parvalbumin (PV), somatostatin (SST), vasoactive intestinal polypeptide (VIP), and \"other (i.e. Lamp5/Sncg)\" subpopulations, which altogether comprise ~ 60 t-types. The coming years will show which t-types actually translate into \"real\" cell types that show a common set of multimodal features, including not only transcriptome but also physiology and morphology as well as connectivity and ultimately function. Only with the better knowledge of clear-cut cell types and experimental access to them, we will be able to reveal their specific functions, a task which turned out to be difficult in a part of the brain being so much specialized for cognition as the cerebral cortex.</p>","PeriodicalId":19954,"journal":{"name":"Pflugers Archiv : European journal of physiology","volume":" ","pages":"721-733"},"PeriodicalIF":2.9000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11033238/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multimodal cortical neuronal cell type classification.\",\"authors\":\"Xiaoyi Mao, Jochen F Staiger\",\"doi\":\"10.1007/s00424-024-02923-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Since more than a century, neuroscientists have distinguished excitatory (glutamatergic) neurons with long-distance projections from inhibitory (GABAergic) neurons with local projections and established layer-dependent schemes for the ~ 80% excitatory (principal) cells as well as the ~ 20% inhibitory neurons. Whereas, in the early days, mainly morphological criteria were used to define cell types, later supplemented by electrophysiological and neurochemical properties, nowadays. single-cell transcriptomics is the method of choice for cell type classification. Bringing recent insight together, we conclude that despite all established layer- and area-dependent differences, there is a set of reliably identifiable cortical cell types that were named (among others) intratelencephalic (IT), extratelencephalic (ET), and corticothalamic (CT) for the excitatory cells, which altogether comprise ~ 56 transcriptomic cell types (t-types). By the same means, inhibitory neurons were subdivided into parvalbumin (PV), somatostatin (SST), vasoactive intestinal polypeptide (VIP), and \\\"other (i.e. Lamp5/Sncg)\\\" subpopulations, which altogether comprise ~ 60 t-types. The coming years will show which t-types actually translate into \\\"real\\\" cell types that show a common set of multimodal features, including not only transcriptome but also physiology and morphology as well as connectivity and ultimately function. Only with the better knowledge of clear-cut cell types and experimental access to them, we will be able to reveal their specific functions, a task which turned out to be difficult in a part of the brain being so much specialized for cognition as the cerebral cortex.</p>\",\"PeriodicalId\":19954,\"journal\":{\"name\":\"Pflugers Archiv : European journal of physiology\",\"volume\":\" \",\"pages\":\"721-733\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11033238/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pflugers Archiv : European journal of physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00424-024-02923-2\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pflugers Archiv : European journal of physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00424-024-02923-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

一个多世纪以来,神经科学家将具有远距离投射的兴奋性(谷氨酸能)神经元与具有局部投射的抑制性(GABA 能)神经元区分开来,并为约 80% 的兴奋性(主)细胞和约 20% 的抑制性神经元建立了依赖层的方案。单细胞转录组学是细胞类型分类的首选方法。综合最近的研究成果,我们得出结论:尽管存在所有已确定的层和区域差异,但仍有一系列可可靠识别的皮层细胞类型,其中兴奋性细胞被命名为脑内细胞(IT)、脑外细胞(ET)和皮质-丘脑细胞(CT),共包括约 56 种转录组细胞类型(t-types)。通过同样的方法,抑制性神经元被细分为副缬氨酸(PV)、体生长抑素(SST)、血管活性肠多肽(VIP)和 "其他(即 Lamp5/Sncg)"亚群,共包括约 60 个 t 型。未来几年将显示哪些 t 型细胞真正转化为 "真正的 "细胞类型,这些细胞类型显示出一系列共同的多模式特征,不仅包括转录组,还包括生理和形态以及连接性和最终功能。只有更好地了解明确的细胞类型并通过实验接触它们,我们才能揭示它们的具体功能,而在大脑皮层这样一个专门从事认知的大脑部位,这项任务是非常困难的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multimodal cortical neuronal cell type classification.

Since more than a century, neuroscientists have distinguished excitatory (glutamatergic) neurons with long-distance projections from inhibitory (GABAergic) neurons with local projections and established layer-dependent schemes for the ~ 80% excitatory (principal) cells as well as the ~ 20% inhibitory neurons. Whereas, in the early days, mainly morphological criteria were used to define cell types, later supplemented by electrophysiological and neurochemical properties, nowadays. single-cell transcriptomics is the method of choice for cell type classification. Bringing recent insight together, we conclude that despite all established layer- and area-dependent differences, there is a set of reliably identifiable cortical cell types that were named (among others) intratelencephalic (IT), extratelencephalic (ET), and corticothalamic (CT) for the excitatory cells, which altogether comprise ~ 56 transcriptomic cell types (t-types). By the same means, inhibitory neurons were subdivided into parvalbumin (PV), somatostatin (SST), vasoactive intestinal polypeptide (VIP), and "other (i.e. Lamp5/Sncg)" subpopulations, which altogether comprise ~ 60 t-types. The coming years will show which t-types actually translate into "real" cell types that show a common set of multimodal features, including not only transcriptome but also physiology and morphology as well as connectivity and ultimately function. Only with the better knowledge of clear-cut cell types and experimental access to them, we will be able to reveal their specific functions, a task which turned out to be difficult in a part of the brain being so much specialized for cognition as the cerebral cortex.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.80
自引率
2.20%
发文量
121
审稿时长
4-8 weeks
期刊介绍: Pflügers Archiv European Journal of Physiology publishes those results of original research that are seen as advancing the physiological sciences, especially those providing mechanistic insights into physiological functions at the molecular and cellular level, and clearly conveying a physiological message. Submissions are encouraged that deal with the evaluation of molecular and cellular mechanisms of disease, ideally resulting in translational research. Purely descriptive papers covering applied physiology or clinical papers will be excluded. Papers on methodological topics will be considered if they contribute to the development of novel tools for further investigation of (patho)physiological mechanisms.
期刊最新文献
Effects of tDCS on glutamatergic pathways in epilepsy: neuroprotective and therapeutic potential. Novel neural pathways targeted by GLP-1R agonists and bariatric surgery. Brain region specific regulation of anandamide (down) and sphingosine-1-phosphate (up) in association with anxiety (AEA) and resilience (S1P) in a mouse model of chronic unpredictable mild stress. Unlocking the potential: unveiling tyrphostins with Michael-reactive cyanoacrylate motif as promising inhibitors of human 5-lipoxygenase. Phosphatidic acid is involved in regulation of autophagy in neurons in vitro and in vivo.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1