利用耦合变异自动编码器进行多波段合成孔径声纳中的平台运动估计。

IF 1.2 Q3 ACOUSTICS JASA express letters Pub Date : 2024-02-01 DOI:10.1121/10.0024998
Angeliki Xenaki, Yan Pailhas, Alessandro Monti
{"title":"利用耦合变异自动编码器进行多波段合成孔径声纳中的平台运动估计。","authors":"Angeliki Xenaki, Yan Pailhas, Alessandro Monti","doi":"10.1121/10.0024998","DOIUrl":null,"url":null,"abstract":"<p><p>Coherent processing in synthetic aperture sonar (SAS) requires platform motion estimation and compensation with sub-wavelength accuracy for high-resolution imaging. Micronavigation, i.e., through-the-sensor platform motion estimation, is essential when positioning information from navigational instruments is absent or inadequately accurate. A machine learning method based on variational Bayesian inference has been proposed for unsupervised data-driven micronavigation. Herein, the multiple-input multiple-output arrangement of a multi-band SAS system is exploited and combined with a hierarchical variational inference scheme, which self-supervises the learning of platform motion and results in improved micronavigation accuracy.</p>","PeriodicalId":73538,"journal":{"name":"JASA express letters","volume":"4 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Platform motion estimation in multi-band synthetic aperture sonar with coupled variational autoencoders.\",\"authors\":\"Angeliki Xenaki, Yan Pailhas, Alessandro Monti\",\"doi\":\"10.1121/10.0024998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Coherent processing in synthetic aperture sonar (SAS) requires platform motion estimation and compensation with sub-wavelength accuracy for high-resolution imaging. Micronavigation, i.e., through-the-sensor platform motion estimation, is essential when positioning information from navigational instruments is absent or inadequately accurate. A machine learning method based on variational Bayesian inference has been proposed for unsupervised data-driven micronavigation. Herein, the multiple-input multiple-output arrangement of a multi-band SAS system is exploited and combined with a hierarchical variational inference scheme, which self-supervises the learning of platform motion and results in improved micronavigation accuracy.</p>\",\"PeriodicalId\":73538,\"journal\":{\"name\":\"JASA express letters\",\"volume\":\"4 2\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JASA express letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1121/10.0024998\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JASA express letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1121/10.0024998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

合成孔径声纳(SAS)的相干处理需要亚波长精度的平台运动估计和补偿,以实现高分辨率成像。在没有导航仪器提供定位信息或定位信息不够准确的情况下,微导航(即通过传感器进行平台运动估计)至关重要。有人提出了一种基于变异贝叶斯推理的机器学习方法,用于无监督数据驱动的微导航。在此,利用多波段 SAS 系统的多输入多输出安排,并结合分层变异推理方案,对平台运动进行自我监督学习,从而提高微导航精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Platform motion estimation in multi-band synthetic aperture sonar with coupled variational autoencoders.

Coherent processing in synthetic aperture sonar (SAS) requires platform motion estimation and compensation with sub-wavelength accuracy for high-resolution imaging. Micronavigation, i.e., through-the-sensor platform motion estimation, is essential when positioning information from navigational instruments is absent or inadequately accurate. A machine learning method based on variational Bayesian inference has been proposed for unsupervised data-driven micronavigation. Herein, the multiple-input multiple-output arrangement of a multi-band SAS system is exploited and combined with a hierarchical variational inference scheme, which self-supervises the learning of platform motion and results in improved micronavigation accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
期刊最新文献
The JIBO Kids Corpus: A speech dataset of child-robot interactions in a classroom environment. The perceptual distinctiveness of the [n-l] contrast in different vowel and tonal contexts. Ambient noise source characterization using spectral, coherence, and directionality estimates at Kongsfjorden. Speaker adaptation using codebook integrated deep neural networks for speech enhancement. Fundamental frequency predominantly drives talker differences in auditory brainstem responses to continuous speech.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1