Lingling Chen , Xu Yang , Chuo Zhao , Shengyou Yang
{"title":"考虑预拉伸和长宽比的有限块状电介质弹性体的电动机械表面起皱技术","authors":"Lingling Chen , Xu Yang , Chuo Zhao , Shengyou Yang","doi":"10.1016/j.ijengsci.2024.104041","DOIUrl":null,"url":null,"abstract":"<div><p>Surface instability of elastomers is of great interest in engineering science, especially in the characterization of flexible electronic materials and the manufacture of micro-nano surface topography. There is limited research on how the geometry of the block affects wrinkle appearance in a multiphysics environment. In this paper, we formulate the boundary-value problem and its incremental forms to analyze the sinusoidal surface instability of a neo-Hookean dielectric block subjected to electromechanical loads. We discover that the competition between the Maxwell stress, induced by the voltage, and the mechanical stress caused by the stretch, plays a crucial role in inducing surface wrinkling. Furthermore, we find that the aspect ratio of the block can modify the critical value of the combination of voltage and pre-stretch required for wrinkling. In addition to this, the aspect ratio also affects the shape of the wrinkling. Specifically, if the elastomer block has a smaller aspect ratio, its sinusoidal wrinkling will have a larger wavenumber. Our paper enhances the understanding of surface instability in electrostrictive elastomers and provides guidance on triggering it without breaking down the elastomer.</p></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"198 ","pages":"Article 104041"},"PeriodicalIF":5.7000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electro-mechanical surface wrinkling of a finite block of dielectric elastomers accounting for the pre-stretch and the aspect ratio\",\"authors\":\"Lingling Chen , Xu Yang , Chuo Zhao , Shengyou Yang\",\"doi\":\"10.1016/j.ijengsci.2024.104041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Surface instability of elastomers is of great interest in engineering science, especially in the characterization of flexible electronic materials and the manufacture of micro-nano surface topography. There is limited research on how the geometry of the block affects wrinkle appearance in a multiphysics environment. In this paper, we formulate the boundary-value problem and its incremental forms to analyze the sinusoidal surface instability of a neo-Hookean dielectric block subjected to electromechanical loads. We discover that the competition between the Maxwell stress, induced by the voltage, and the mechanical stress caused by the stretch, plays a crucial role in inducing surface wrinkling. Furthermore, we find that the aspect ratio of the block can modify the critical value of the combination of voltage and pre-stretch required for wrinkling. In addition to this, the aspect ratio also affects the shape of the wrinkling. Specifically, if the elastomer block has a smaller aspect ratio, its sinusoidal wrinkling will have a larger wavenumber. Our paper enhances the understanding of surface instability in electrostrictive elastomers and provides guidance on triggering it without breaking down the elastomer.</p></div>\",\"PeriodicalId\":14053,\"journal\":{\"name\":\"International Journal of Engineering Science\",\"volume\":\"198 \",\"pages\":\"Article 104041\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020722524000259\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020722524000259","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Electro-mechanical surface wrinkling of a finite block of dielectric elastomers accounting for the pre-stretch and the aspect ratio
Surface instability of elastomers is of great interest in engineering science, especially in the characterization of flexible electronic materials and the manufacture of micro-nano surface topography. There is limited research on how the geometry of the block affects wrinkle appearance in a multiphysics environment. In this paper, we formulate the boundary-value problem and its incremental forms to analyze the sinusoidal surface instability of a neo-Hookean dielectric block subjected to electromechanical loads. We discover that the competition between the Maxwell stress, induced by the voltage, and the mechanical stress caused by the stretch, plays a crucial role in inducing surface wrinkling. Furthermore, we find that the aspect ratio of the block can modify the critical value of the combination of voltage and pre-stretch required for wrinkling. In addition to this, the aspect ratio also affects the shape of the wrinkling. Specifically, if the elastomer block has a smaller aspect ratio, its sinusoidal wrinkling will have a larger wavenumber. Our paper enhances the understanding of surface instability in electrostrictive elastomers and provides guidance on triggering it without breaking down the elastomer.
期刊介绍:
The International Journal of Engineering Science is not limited to a specific aspect of science and engineering but is instead devoted to a wide range of subfields in the engineering sciences. While it encourages a broad spectrum of contribution in the engineering sciences, its core interest lies in issues concerning material modeling and response. Articles of interdisciplinary nature are particularly welcome.
The primary goal of the new editors is to maintain high quality of publications. There will be a commitment to expediting the time taken for the publication of the papers. The articles that are sent for reviews will have names of the authors deleted with a view towards enhancing the objectivity and fairness of the review process.
Articles that are devoted to the purely mathematical aspects without a discussion of the physical implications of the results or the consideration of specific examples are discouraged. Articles concerning material science should not be limited merely to a description and recording of observations but should contain theoretical or quantitative discussion of the results.