量子机器学习中可靠的不确定性量化量子共形预测

Sangwoo Park;Osvaldo Simeone
{"title":"量子机器学习中可靠的不确定性量化量子共形预测","authors":"Sangwoo Park;Osvaldo Simeone","doi":"10.1109/TQE.2023.3333224","DOIUrl":null,"url":null,"abstract":"Quantum machine learning is a promising programming paradigm for the optimization of quantum algorithms in the current era of noisy intermediate-scale quantum computers. A fundamental challenge in quantum machine learning is generalization, as the designer targets performance under testing conditions while having access only to limited training data. Existing generalization analyses, while identifying important general trends and scaling laws, cannot be used to assign reliable and informative “error bars” to the decisions made by quantum models. In this article, we propose a general methodology that can reliably quantify the uncertainty of quantum models, irrespective of the amount of training data, the number of shots, the ansatz, the training algorithm, and the presence of quantum hardware noise. The approach, which builds on probabilistic conformal prediction (CP), turns an arbitrary, possibly small, number of shots from a pretrained quantum model into a set prediction, e.g., an interval, that \n<italic>provably</i>\n contains the true target with any desired coverage level. Experimental results confirm the theoretical calibration guarantees of the proposed framework, referred to as quantum CP.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"5 ","pages":"1-24"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10321713","citationCount":"0","resultStr":"{\"title\":\"Quantum Conformal Prediction for Reliable Uncertainty Quantification in Quantum Machine Learning\",\"authors\":\"Sangwoo Park;Osvaldo Simeone\",\"doi\":\"10.1109/TQE.2023.3333224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum machine learning is a promising programming paradigm for the optimization of quantum algorithms in the current era of noisy intermediate-scale quantum computers. A fundamental challenge in quantum machine learning is generalization, as the designer targets performance under testing conditions while having access only to limited training data. Existing generalization analyses, while identifying important general trends and scaling laws, cannot be used to assign reliable and informative “error bars” to the decisions made by quantum models. In this article, we propose a general methodology that can reliably quantify the uncertainty of quantum models, irrespective of the amount of training data, the number of shots, the ansatz, the training algorithm, and the presence of quantum hardware noise. The approach, which builds on probabilistic conformal prediction (CP), turns an arbitrary, possibly small, number of shots from a pretrained quantum model into a set prediction, e.g., an interval, that \\n<italic>provably</i>\\n contains the true target with any desired coverage level. Experimental results confirm the theoretical calibration guarantees of the proposed framework, referred to as quantum CP.\",\"PeriodicalId\":100644,\"journal\":{\"name\":\"IEEE Transactions on Quantum Engineering\",\"volume\":\"5 \",\"pages\":\"1-24\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10321713\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Quantum Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10321713/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Quantum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10321713/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

量子机器学习是一种很有前途的编程范式,可用于优化当前噪声中等规模量子计算机时代的量子算法。量子机器学习的一个基本挑战是泛化,因为设计者的目标是测试条件下的性能,而只能获得有限的训练数据。现有的泛化分析虽然能识别重要的一般趋势和缩放规律,但却不能用于为量子模型做出的决策分配可靠且信息丰富的 "误差条"。在这篇文章中,我们提出了一种通用方法,它可以可靠地量化量子模型的不确定性,而不受训练数据量、拍摄次数、反演、训练算法和量子硬件噪声存在的影响。该方法以概率共形预测(CP)为基础,将来自预训练量子模型的任意数量(可能很少)的镜头转化为一组预测(例如一个区间),该区间可证明包含具有任何期望覆盖水平的真实目标。实验结果证实了拟议框架的理论校准保证,该框架被称为量子 CP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantum Conformal Prediction for Reliable Uncertainty Quantification in Quantum Machine Learning
Quantum machine learning is a promising programming paradigm for the optimization of quantum algorithms in the current era of noisy intermediate-scale quantum computers. A fundamental challenge in quantum machine learning is generalization, as the designer targets performance under testing conditions while having access only to limited training data. Existing generalization analyses, while identifying important general trends and scaling laws, cannot be used to assign reliable and informative “error bars” to the decisions made by quantum models. In this article, we propose a general methodology that can reliably quantify the uncertainty of quantum models, irrespective of the amount of training data, the number of shots, the ansatz, the training algorithm, and the presence of quantum hardware noise. The approach, which builds on probabilistic conformal prediction (CP), turns an arbitrary, possibly small, number of shots from a pretrained quantum model into a set prediction, e.g., an interval, that provably contains the true target with any desired coverage level. Experimental results confirm the theoretical calibration guarantees of the proposed framework, referred to as quantum CP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
0.00%
发文量
0
期刊最新文献
IEEE Transactions on Quantum Engineering Publication Information Dissipative Variational Quantum Algorithms for Gibbs State Preparation TAQNet: Traffic-Aware Minimum-Cost Quantum Communication Network Planning FPGA-Based Synchronization of Frequency-Domain Interferometer for QKD Grover's Oracle for the Shortest Vector Problem and Its Application in Hybrid Classical–Quantum Solvers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1