Wei Luo, Aung Myint Khaing, Carlos David Rodriguez-Gallegos, Shin Woei Leow, Thomas Reindl, Mauro Pravettoni
{"title":"用于建筑一体化的有机光伏组件的长期户外研究","authors":"Wei Luo, Aung Myint Khaing, Carlos David Rodriguez-Gallegos, Shin Woei Leow, Thomas Reindl, Mauro Pravettoni","doi":"10.1002/pip.3791","DOIUrl":null,"url":null,"abstract":"<p>Organic photovoltaics (OPV) has attracted tremendous attention as a promising alternative to silicon wafer-based technologies for building integration. While significant progress has been achieved on the power conversion efficiency of OPV technologies, their field stability is rarely studied. This work investigates the field performance and reliability of a large-area OPV module designed for building integration in tropical Singapore for 4.5 years. The device suffered more than 14% degradation in power at the standard testing conditions from the initial performance, largely due to losses in fill factor (−12% relative). During the monitoring period, it exhibited comparable performance to more conventional silicon PV technologies, with an average specific energy yield of about 4 kWh/kWp/day and an average performance ratio of 0.96. Excellent performance at low light conditions was also observed. However, its field performance was heavily impacted by soiling, which typically led to a 5 to 10% loss in the current output after several months. Further, the device's outdoor performance also showed a three-stage degradation process, including (1) an initial slow degradation in the first 2 years (about −1%/year), (2) a stable period with negligible performance loss from Years 2 to 3.5, and (3) a rapid degradation in the last year (about −5%/year).</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"32 7","pages":"481-491"},"PeriodicalIF":8.0000,"publicationDate":"2024-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3791","citationCount":"0","resultStr":"{\"title\":\"Long-term outdoor study of an organic photovoltaic module for building integration\",\"authors\":\"Wei Luo, Aung Myint Khaing, Carlos David Rodriguez-Gallegos, Shin Woei Leow, Thomas Reindl, Mauro Pravettoni\",\"doi\":\"10.1002/pip.3791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Organic photovoltaics (OPV) has attracted tremendous attention as a promising alternative to silicon wafer-based technologies for building integration. While significant progress has been achieved on the power conversion efficiency of OPV technologies, their field stability is rarely studied. This work investigates the field performance and reliability of a large-area OPV module designed for building integration in tropical Singapore for 4.5 years. The device suffered more than 14% degradation in power at the standard testing conditions from the initial performance, largely due to losses in fill factor (−12% relative). During the monitoring period, it exhibited comparable performance to more conventional silicon PV technologies, with an average specific energy yield of about 4 kWh/kWp/day and an average performance ratio of 0.96. Excellent performance at low light conditions was also observed. However, its field performance was heavily impacted by soiling, which typically led to a 5 to 10% loss in the current output after several months. Further, the device's outdoor performance also showed a three-stage degradation process, including (1) an initial slow degradation in the first 2 years (about −1%/year), (2) a stable period with negligible performance loss from Years 2 to 3.5, and (3) a rapid degradation in the last year (about −5%/year).</p>\",\"PeriodicalId\":223,\"journal\":{\"name\":\"Progress in Photovoltaics\",\"volume\":\"32 7\",\"pages\":\"481-491\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3791\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Photovoltaics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/pip.3791\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Photovoltaics","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pip.3791","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Long-term outdoor study of an organic photovoltaic module for building integration
Organic photovoltaics (OPV) has attracted tremendous attention as a promising alternative to silicon wafer-based technologies for building integration. While significant progress has been achieved on the power conversion efficiency of OPV technologies, their field stability is rarely studied. This work investigates the field performance and reliability of a large-area OPV module designed for building integration in tropical Singapore for 4.5 years. The device suffered more than 14% degradation in power at the standard testing conditions from the initial performance, largely due to losses in fill factor (−12% relative). During the monitoring period, it exhibited comparable performance to more conventional silicon PV technologies, with an average specific energy yield of about 4 kWh/kWp/day and an average performance ratio of 0.96. Excellent performance at low light conditions was also observed. However, its field performance was heavily impacted by soiling, which typically led to a 5 to 10% loss in the current output after several months. Further, the device's outdoor performance also showed a three-stage degradation process, including (1) an initial slow degradation in the first 2 years (about −1%/year), (2) a stable period with negligible performance loss from Years 2 to 3.5, and (3) a rapid degradation in the last year (about −5%/year).
期刊介绍:
Progress in Photovoltaics offers a prestigious forum for reporting advances in this rapidly developing technology, aiming to reach all interested professionals, researchers and energy policy-makers.
The key criterion is that all papers submitted should report substantial “progress” in photovoltaics.
Papers are encouraged that report substantial “progress” such as gains in independently certified solar cell efficiency, eligible for a new entry in the journal''s widely referenced Solar Cell Efficiency Tables.
Examples of papers that will not be considered for publication are those that report development in materials without relation to data on cell performance, routine analysis, characterisation or modelling of cells or processing sequences, routine reports of system performance, improvements in electronic hardware design, or country programs, although invited papers may occasionally be solicited in these areas to capture accumulated “progress”.