使用 Rasch 模型和离散化方法分析现有连续数据,探索结构测量方法

IF 0.6 Q3 SOCIAL SCIENCES, INTERDISCIPLINARY Measurement-Interdisciplinary Research and Perspectives Pub Date : 2024-02-20 DOI:10.1080/15366367.2023.2210358
Chen Qiu, Michael R. Peabody, Kelly D. Bradley
{"title":"使用 Rasch 模型和离散化方法分析现有连续数据,探索结构测量方法","authors":"Chen Qiu, Michael R. Peabody, Kelly D. Bradley","doi":"10.1080/15366367.2023.2210358","DOIUrl":null,"url":null,"abstract":"It is meaningful to create a comprehensive score to extract information from mass continuous data when they measure the same latent concept. Therefore, this study adopts the logic of psychometrics ...","PeriodicalId":46596,"journal":{"name":"Measurement-Interdisciplinary Research and Perspectives","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring Construct Measures Using Rasch Models and Discretization Methods to Analyze Existing Continuous Data\",\"authors\":\"Chen Qiu, Michael R. Peabody, Kelly D. Bradley\",\"doi\":\"10.1080/15366367.2023.2210358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is meaningful to create a comprehensive score to extract information from mass continuous data when they measure the same latent concept. Therefore, this study adopts the logic of psychometrics ...\",\"PeriodicalId\":46596,\"journal\":{\"name\":\"Measurement-Interdisciplinary Research and Perspectives\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement-Interdisciplinary Research and Perspectives\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15366367.2023.2210358\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"SOCIAL SCIENCES, INTERDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement-Interdisciplinary Research and Perspectives","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15366367.2023.2210358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

当大量连续数据测量同一潜在概念时,从这些数据中提取信息并创建一个综合分数是非常有意义的。因此,本研究采用心理测量学的逻辑 ...
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring Construct Measures Using Rasch Models and Discretization Methods to Analyze Existing Continuous Data
It is meaningful to create a comprehensive score to extract information from mass continuous data when they measure the same latent concept. Therefore, this study adopts the logic of psychometrics ...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Measurement-Interdisciplinary Research and Perspectives
Measurement-Interdisciplinary Research and Perspectives SOCIAL SCIENCES, INTERDISCIPLINARY-
CiteScore
1.80
自引率
0.00%
发文量
23
期刊最新文献
A Latent Trait Approach to the Measurement of Physical Fitness Application of Machine Learning Techniques for Fake News Classification The Use of Multidimensional Item Response Theory Estimations in Controlling Differential Item Functioning Opinion Instability and Measurement Errors: A G-Theory Analysis of College Students Predicting the Risk of Diabetes and Heart Disease with Machine Learning Classifiers: The Mediation Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1