银纳米粒子在食用鱼 Oreochromis mossambicus 中的体内毒理学评估。

IF 2.2 4区 医学 Q3 TOXICOLOGY Toxicology Research Pub Date : 2024-02-17 eCollection Date: 2024-02-01 DOI:10.1093/toxres/tfae019
Gisha Sivan, Rajesh Pamanji, Srikanth Koigoora, Nimila Joseph, Joseph Selvin
{"title":"银纳米粒子在食用鱼 Oreochromis mossambicus 中的体内毒理学评估。","authors":"Gisha Sivan, Rajesh Pamanji, Srikanth Koigoora, Nimila Joseph, Joseph Selvin","doi":"10.1093/toxres/tfae019","DOIUrl":null,"url":null,"abstract":"<p><p>Silver nanoparticles are the extensively utilized among all nanoparticles due to their antibacterial and wound healing properties making them highly suitable for medical and pharmaceutical applications. The field of nanoparticle toxicity is an emerging field and the present study aims to assess the biochemical, hematological and genotoxicity in <i>Oreochromis mossambicus</i> exposed to different concentrations of silver nanoparticles for 7 and 14 days. Silver nanoparticles were synthesized by reduction of silver nitrate using trisodium citrate and was characterized using X-ray diffraction, SEM, HRTEM and DLS. Hematological parameters like RBC, WBC, Hb, HCT and MCV and for biochemical analysis, antioxidant enzymes SOD, CAT and GPX and serum enzymes AST, ALT, ACP, ALP and LDH were analyzed. Genotoxicity was studied using comet assay. Results obtained showed decrease in erythrocytes, HCT, Hb and MCV while an increase was noted in WBC on day 7 and 14. The antioxidant enzymes SOD, CAT and GPx showed a decrease and the lipid peroxidation product MDA was elevated. The serum enzymes AST, ALT, ACP ALP and LDH showed an increased activity when compared to control. DNA damage was evident by an increase in % TDNA. The results indicate hematological, biochemical and genotoxicity of silver nanoparticles that might be mediated through ROS generation in <i>O. mossambicus</i>.</p>","PeriodicalId":105,"journal":{"name":"Toxicology Research","volume":"13 1","pages":"tfae019"},"PeriodicalIF":2.2000,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10874924/pdf/","citationCount":"0","resultStr":"{\"title\":\"In vivo toxicological assessment of silver nanoparticle in edible fish, <i>Oreochromis mossambicus</i>.\",\"authors\":\"Gisha Sivan, Rajesh Pamanji, Srikanth Koigoora, Nimila Joseph, Joseph Selvin\",\"doi\":\"10.1093/toxres/tfae019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Silver nanoparticles are the extensively utilized among all nanoparticles due to their antibacterial and wound healing properties making them highly suitable for medical and pharmaceutical applications. The field of nanoparticle toxicity is an emerging field and the present study aims to assess the biochemical, hematological and genotoxicity in <i>Oreochromis mossambicus</i> exposed to different concentrations of silver nanoparticles for 7 and 14 days. Silver nanoparticles were synthesized by reduction of silver nitrate using trisodium citrate and was characterized using X-ray diffraction, SEM, HRTEM and DLS. Hematological parameters like RBC, WBC, Hb, HCT and MCV and for biochemical analysis, antioxidant enzymes SOD, CAT and GPX and serum enzymes AST, ALT, ACP, ALP and LDH were analyzed. Genotoxicity was studied using comet assay. Results obtained showed decrease in erythrocytes, HCT, Hb and MCV while an increase was noted in WBC on day 7 and 14. The antioxidant enzymes SOD, CAT and GPx showed a decrease and the lipid peroxidation product MDA was elevated. The serum enzymes AST, ALT, ACP ALP and LDH showed an increased activity when compared to control. DNA damage was evident by an increase in % TDNA. The results indicate hematological, biochemical and genotoxicity of silver nanoparticles that might be mediated through ROS generation in <i>O. mossambicus</i>.</p>\",\"PeriodicalId\":105,\"journal\":{\"name\":\"Toxicology Research\",\"volume\":\"13 1\",\"pages\":\"tfae019\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10874924/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/toxres/tfae019\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/toxres/tfae019","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

银纳米粒子具有抗菌和伤口愈合的特性,非常适合医疗和制药应用,因此在所有纳米粒子中被广泛使用。纳米颗粒的毒性是一个新兴领域,本研究旨在评估暴露于不同浓度的银纳米颗粒 7 天和 14 天的裸鲤的生化、血液学和遗传毒性。银纳米粒子是通过柠檬酸三钠还原硝酸银合成的,并使用 X 射线衍射、扫描电镜、HRTEM 和 DLS 进行表征。分析了 RBC、WBC、Hb、HCT 和 MCV 等血液学参数,以及 SOD、CAT 和 GPX 等抗氧化酶和 AST、ALT、ACP、ALP 和 LDH 等血清酶的生化分析。使用彗星试验研究了遗传毒性。结果表明,在第 7 天和第 14 天,红细胞、血细胞比容、血红蛋白和 MCV 都有所下降,而白细胞则有所增加。抗氧化酶 SOD、CAT 和 GPx 出现下降,脂质过氧化产物 MDA 升高。与对照组相比,血清酶 AST、ALT、ACP ALP 和 LDH 的活性都有所提高。DNA 损伤表现为 TDNA 百分比的增加。这些结果表明,银纳米颗粒可能通过产生 ROS 来介导莫桑比克鳗鱼的血液学、生物化学和遗传毒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In vivo toxicological assessment of silver nanoparticle in edible fish, Oreochromis mossambicus.

Silver nanoparticles are the extensively utilized among all nanoparticles due to their antibacterial and wound healing properties making them highly suitable for medical and pharmaceutical applications. The field of nanoparticle toxicity is an emerging field and the present study aims to assess the biochemical, hematological and genotoxicity in Oreochromis mossambicus exposed to different concentrations of silver nanoparticles for 7 and 14 days. Silver nanoparticles were synthesized by reduction of silver nitrate using trisodium citrate and was characterized using X-ray diffraction, SEM, HRTEM and DLS. Hematological parameters like RBC, WBC, Hb, HCT and MCV and for biochemical analysis, antioxidant enzymes SOD, CAT and GPX and serum enzymes AST, ALT, ACP, ALP and LDH were analyzed. Genotoxicity was studied using comet assay. Results obtained showed decrease in erythrocytes, HCT, Hb and MCV while an increase was noted in WBC on day 7 and 14. The antioxidant enzymes SOD, CAT and GPx showed a decrease and the lipid peroxidation product MDA was elevated. The serum enzymes AST, ALT, ACP ALP and LDH showed an increased activity when compared to control. DNA damage was evident by an increase in % TDNA. The results indicate hematological, biochemical and genotoxicity of silver nanoparticles that might be mediated through ROS generation in O. mossambicus.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Toxicology Research
Toxicology Research TOXICOLOGY-
CiteScore
3.60
自引率
0.00%
发文量
82
期刊介绍: A multi-disciplinary journal covering the best research in both fundamental and applied aspects of toxicology
期刊最新文献
Unveiling the interspecies correlation and sensitivity factor analysis of rat and mouse acute oral toxicity of antimicrobial agents: first QSTR and QTTR Modeling report. Stress survival and longevity of Caenorhabditis elegans lacking NCS-1. Lipid-core nanocapsules containing simvastatin do not affect the biochemical and hematological indicators of toxicity in rats. Proteomics reveals that nanoplastics with different sizes induce hepatocyte apoptosis in mice through distinct mechanisms involving mitophagy dysregulation and cell cycle arrest. Antibiotic contaminants and their impact in Gingee River, Puducherry: insights from SPE-UPLC-MS/MS and zebrafish study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1