{"title":"部分重编程作为老化生物体神经组织再生的一种方法","authors":"Ali Saber Sichani, Somayeh Khoddam, Shayan Shakeri, Zahra Tavakkoli, Arad Ranji Jafroodi, Reza Dabbaghipour, Mohsen Sisakht, Jafar Fallahi","doi":"10.1089/cell.2023.0123","DOIUrl":null,"url":null,"abstract":"<p><p>Aging causes numerous age-related diseases, leading the human species to death. Nevertheless, rejuvenating strategies based on cell epigenetic modifications are a possible approach to counteract disease progression while getting old. Cell reprogramming of adult somatic cells toward pluripotency ought to be a promising tool for age-related diseases. However, researchers do not have control over this process as cells lose their fate, and cause potential cancerous cells or unexpected cell phenotypes. Direct and partial reprogramming were introduced in recent years with distinctive applications. Although direct reprogramming makes cells lose their identity, it has various applications in regeneration medicine. Temporary and regulated <i>in vivo</i> overexpression of Yamanaka factors has been shown in several experimental contexts to be achievable and is used to rejuvenate mice models. This regeneration can be accomplished by altering the epigenetic adult cell signature to the signature of a younger cell. The greatest advantage of partial reprogramming is that this method does not allow cells to lose their identity when they are resetting their epigenetic clock. It is a regimen of short-term Oct3/4, Sox2, Klf4, and c-Myc expression <i>in vivo</i> that prevents full reprogramming to the pluripotent state and avoids both tumorigenesis and the presence of unwanted undifferentiated cells. We know that many neurological age-related diseases, such as Alzheimer's disease, stroke, dementia, and Parkinson's disease, are the main cause of death in the last decades of life. Therefore, scientists have a special tendency regarding neuroregeneration methods to increase human life expectancy.</p>","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Partial Reprogramming as a Method for Regenerating Neural Tissues in Aged Organisms.\",\"authors\":\"Ali Saber Sichani, Somayeh Khoddam, Shayan Shakeri, Zahra Tavakkoli, Arad Ranji Jafroodi, Reza Dabbaghipour, Mohsen Sisakht, Jafar Fallahi\",\"doi\":\"10.1089/cell.2023.0123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aging causes numerous age-related diseases, leading the human species to death. Nevertheless, rejuvenating strategies based on cell epigenetic modifications are a possible approach to counteract disease progression while getting old. Cell reprogramming of adult somatic cells toward pluripotency ought to be a promising tool for age-related diseases. However, researchers do not have control over this process as cells lose their fate, and cause potential cancerous cells or unexpected cell phenotypes. Direct and partial reprogramming were introduced in recent years with distinctive applications. Although direct reprogramming makes cells lose their identity, it has various applications in regeneration medicine. Temporary and regulated <i>in vivo</i> overexpression of Yamanaka factors has been shown in several experimental contexts to be achievable and is used to rejuvenate mice models. This regeneration can be accomplished by altering the epigenetic adult cell signature to the signature of a younger cell. The greatest advantage of partial reprogramming is that this method does not allow cells to lose their identity when they are resetting their epigenetic clock. It is a regimen of short-term Oct3/4, Sox2, Klf4, and c-Myc expression <i>in vivo</i> that prevents full reprogramming to the pluripotent state and avoids both tumorigenesis and the presence of unwanted undifferentiated cells. We know that many neurological age-related diseases, such as Alzheimer's disease, stroke, dementia, and Parkinson's disease, are the main cause of death in the last decades of life. Therefore, scientists have a special tendency regarding neuroregeneration methods to increase human life expectancy.</p>\",\"PeriodicalId\":9708,\"journal\":{\"name\":\"Cellular reprogramming\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular reprogramming\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/cell.2023.0123\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular reprogramming","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/cell.2023.0123","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Partial Reprogramming as a Method for Regenerating Neural Tissues in Aged Organisms.
Aging causes numerous age-related diseases, leading the human species to death. Nevertheless, rejuvenating strategies based on cell epigenetic modifications are a possible approach to counteract disease progression while getting old. Cell reprogramming of adult somatic cells toward pluripotency ought to be a promising tool for age-related diseases. However, researchers do not have control over this process as cells lose their fate, and cause potential cancerous cells or unexpected cell phenotypes. Direct and partial reprogramming were introduced in recent years with distinctive applications. Although direct reprogramming makes cells lose their identity, it has various applications in regeneration medicine. Temporary and regulated in vivo overexpression of Yamanaka factors has been shown in several experimental contexts to be achievable and is used to rejuvenate mice models. This regeneration can be accomplished by altering the epigenetic adult cell signature to the signature of a younger cell. The greatest advantage of partial reprogramming is that this method does not allow cells to lose their identity when they are resetting their epigenetic clock. It is a regimen of short-term Oct3/4, Sox2, Klf4, and c-Myc expression in vivo that prevents full reprogramming to the pluripotent state and avoids both tumorigenesis and the presence of unwanted undifferentiated cells. We know that many neurological age-related diseases, such as Alzheimer's disease, stroke, dementia, and Parkinson's disease, are the main cause of death in the last decades of life. Therefore, scientists have a special tendency regarding neuroregeneration methods to increase human life expectancy.
期刊介绍:
Cellular Reprogramming is the premier journal dedicated to providing new insights on the etiology, development, and potential treatment of various diseases through reprogramming cellular mechanisms. The Journal delivers information on cutting-edge techniques and the latest high-quality research and discoveries that are transforming biomedical research.
Cellular Reprogramming coverage includes:
Somatic cell nuclear transfer and reprogramming in early embryos
Embryonic stem cells
Nuclear transfer stem cells (stem cells derived from nuclear transfer embryos)
Generation of induced pluripotent stem (iPS) cells and/or potential for cell-based therapies
Epigenetics
Adult stem cells and pluripotency.