Amarachi A Kanu, Michelle M Johnston, Ethan A Poweleit, Samuel E Vaughn, Jeffrey R Strawn, Laura B Ramsey
{"title":"CYP2D6 代谢状态对儿童和青少年利培酮和帕潘立酮耐受性的影响。","authors":"Amarachi A Kanu, Michelle M Johnston, Ethan A Poweleit, Samuel E Vaughn, Jeffrey R Strawn, Laura B Ramsey","doi":"10.1089/cap.2023.0046","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Background:</i></b> Risperidone and, to a lesser extent, paliperidone are metabolized by CYP2D6; however, there are limited data related to variation in CYP2D6 phenotypes and the tolerability of these medications in children and adolescents. Furthermore, the impact of CYP2D6 on the association of risperidone and paliperidone with hyperprolactinemia in youth is not well understood. <b><i>Methods:</i></b> A retrospective chart review was performed in psychiatrically hospitalized children and adolescents prescribed risperidone (<i>n</i> = 263, age = 3-18 years, mean age = 13 ± 3 years, 49% female) or paliperidone (<i>n</i> = 124, age = 5-18 years, mean age = 15 ± 2 years, 44% female) who had CYP2D6 genotyping performed as part of routine care. CYP2D6 phenotypes were determined based on Clinical Pharmacogenetics Implementation Consortium guidelines and CYP2D6 inhibitors causing phenoconversion. Adverse effects were obtained from a review of the electronic health record, and patients were selected, in part, to enrich non-normal metabolizers. <b><i>Results:</i></b> Among risperidone-treated patients, 45% experienced an adverse effect, whereas 36% of paliperidone-treated patients experienced adverse effects. Discontinuation of risperidone due to lack of efficacy was more frequent in the CYP2D6 normal metabolizers and ultrarapid metabolizers compared with intermediate metabolizers (IMs) and phenoconverted poor metabolizers (pPMs) (54.5% vs. 32.7%, <i>p</i> < 0.001). Discontinuation due to weight gain was more common among risperidone- than paliperidone-treated patients (17% vs. 7%, <i>p</i> = 0.011). Among those taking paliperidone, CYP2D6 was associated with discontinuation due to side effects (<i>p</i> = 0.008), and youth with slower CYP2D6 metabolism (i.e., pPMs and IMs) were more likely to discontinue. Hyperprolactinemia was found in 10% of paliperidone-treated patients and 5% of risperidone-treated patients, and slower CYP2D6 metabolizers required higher risperidone doses to cause hyperprolactinemia (<i>p</i> = 0.011). <b><i>Conclusions:</i></b> CYP2D6 phenotype is associated with discontinuation of risperidone due to lack of efficacy and the dose of risperidone that induced hyperprolactinemia, as well as discontinuation of paliperidone due to adverse effects. Future studies should evaluate exposure-response and toxicity relationships in risperidone- and paliperidone-treated youth.</p>","PeriodicalId":15277,"journal":{"name":"Journal of child and adolescent psychopharmacology","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of CYP2D6 Metabolizer Status on Risperidone and Paliperidone Tolerability in Children and Adolescents.\",\"authors\":\"Amarachi A Kanu, Michelle M Johnston, Ethan A Poweleit, Samuel E Vaughn, Jeffrey R Strawn, Laura B Ramsey\",\"doi\":\"10.1089/cap.2023.0046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b><i>Background:</i></b> Risperidone and, to a lesser extent, paliperidone are metabolized by CYP2D6; however, there are limited data related to variation in CYP2D6 phenotypes and the tolerability of these medications in children and adolescents. Furthermore, the impact of CYP2D6 on the association of risperidone and paliperidone with hyperprolactinemia in youth is not well understood. <b><i>Methods:</i></b> A retrospective chart review was performed in psychiatrically hospitalized children and adolescents prescribed risperidone (<i>n</i> = 263, age = 3-18 years, mean age = 13 ± 3 years, 49% female) or paliperidone (<i>n</i> = 124, age = 5-18 years, mean age = 15 ± 2 years, 44% female) who had CYP2D6 genotyping performed as part of routine care. CYP2D6 phenotypes were determined based on Clinical Pharmacogenetics Implementation Consortium guidelines and CYP2D6 inhibitors causing phenoconversion. Adverse effects were obtained from a review of the electronic health record, and patients were selected, in part, to enrich non-normal metabolizers. <b><i>Results:</i></b> Among risperidone-treated patients, 45% experienced an adverse effect, whereas 36% of paliperidone-treated patients experienced adverse effects. Discontinuation of risperidone due to lack of efficacy was more frequent in the CYP2D6 normal metabolizers and ultrarapid metabolizers compared with intermediate metabolizers (IMs) and phenoconverted poor metabolizers (pPMs) (54.5% vs. 32.7%, <i>p</i> < 0.001). Discontinuation due to weight gain was more common among risperidone- than paliperidone-treated patients (17% vs. 7%, <i>p</i> = 0.011). Among those taking paliperidone, CYP2D6 was associated with discontinuation due to side effects (<i>p</i> = 0.008), and youth with slower CYP2D6 metabolism (i.e., pPMs and IMs) were more likely to discontinue. Hyperprolactinemia was found in 10% of paliperidone-treated patients and 5% of risperidone-treated patients, and slower CYP2D6 metabolizers required higher risperidone doses to cause hyperprolactinemia (<i>p</i> = 0.011). <b><i>Conclusions:</i></b> CYP2D6 phenotype is associated with discontinuation of risperidone due to lack of efficacy and the dose of risperidone that induced hyperprolactinemia, as well as discontinuation of paliperidone due to adverse effects. Future studies should evaluate exposure-response and toxicity relationships in risperidone- and paliperidone-treated youth.</p>\",\"PeriodicalId\":15277,\"journal\":{\"name\":\"Journal of child and adolescent psychopharmacology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of child and adolescent psychopharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/cap.2023.0046\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PEDIATRICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of child and adolescent psychopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/cap.2023.0046","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PEDIATRICS","Score":null,"Total":0}
Influence of CYP2D6 Metabolizer Status on Risperidone and Paliperidone Tolerability in Children and Adolescents.
Background: Risperidone and, to a lesser extent, paliperidone are metabolized by CYP2D6; however, there are limited data related to variation in CYP2D6 phenotypes and the tolerability of these medications in children and adolescents. Furthermore, the impact of CYP2D6 on the association of risperidone and paliperidone with hyperprolactinemia in youth is not well understood. Methods: A retrospective chart review was performed in psychiatrically hospitalized children and adolescents prescribed risperidone (n = 263, age = 3-18 years, mean age = 13 ± 3 years, 49% female) or paliperidone (n = 124, age = 5-18 years, mean age = 15 ± 2 years, 44% female) who had CYP2D6 genotyping performed as part of routine care. CYP2D6 phenotypes were determined based on Clinical Pharmacogenetics Implementation Consortium guidelines and CYP2D6 inhibitors causing phenoconversion. Adverse effects were obtained from a review of the electronic health record, and patients were selected, in part, to enrich non-normal metabolizers. Results: Among risperidone-treated patients, 45% experienced an adverse effect, whereas 36% of paliperidone-treated patients experienced adverse effects. Discontinuation of risperidone due to lack of efficacy was more frequent in the CYP2D6 normal metabolizers and ultrarapid metabolizers compared with intermediate metabolizers (IMs) and phenoconverted poor metabolizers (pPMs) (54.5% vs. 32.7%, p < 0.001). Discontinuation due to weight gain was more common among risperidone- than paliperidone-treated patients (17% vs. 7%, p = 0.011). Among those taking paliperidone, CYP2D6 was associated with discontinuation due to side effects (p = 0.008), and youth with slower CYP2D6 metabolism (i.e., pPMs and IMs) were more likely to discontinue. Hyperprolactinemia was found in 10% of paliperidone-treated patients and 5% of risperidone-treated patients, and slower CYP2D6 metabolizers required higher risperidone doses to cause hyperprolactinemia (p = 0.011). Conclusions: CYP2D6 phenotype is associated with discontinuation of risperidone due to lack of efficacy and the dose of risperidone that induced hyperprolactinemia, as well as discontinuation of paliperidone due to adverse effects. Future studies should evaluate exposure-response and toxicity relationships in risperidone- and paliperidone-treated youth.
期刊介绍:
Journal of Child and Adolescent Psychopharmacology (JCAP) is the premier peer-reviewed journal covering the clinical aspects of treating this patient population with psychotropic medications including side effects and interactions, standard doses, and research on new and existing medications. The Journal includes information on related areas of medical sciences such as advances in developmental pharmacokinetics, developmental neuroscience, metabolism, nutrition, molecular genetics, and more.
Journal of Child and Adolescent Psychopharmacology coverage includes:
New drugs and treatment strategies including the use of psycho-stimulants, selective serotonin reuptake inhibitors, mood stabilizers, and atypical antipsychotics
New developments in the diagnosis and treatment of ADHD, anxiety disorders, schizophrenia, autism spectrum disorders, bipolar disorder, eating disorders, along with other disorders
Reports of common and rare Treatment Emergent Adverse Events (TEAEs) including: hyperprolactinemia, galactorrhea, weight gain/loss, metabolic syndrome, dyslipidemia, switching phenomena, sudden death, and the potential increase of suicide. Outcomes research.