根据 miRNA 有效载荷和细胞类型特异性系谱图确定促进伤口愈合的细胞外囊泡的活性。

IF 12.1 1区 医学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Molecular Therapy Pub Date : 2024-09-04 Epub Date: 2024-02-19 DOI:10.1016/j.ymthe.2024.02.019
Dong Jun Park, Wooil Choi, Sakeef Sayeed, Robert A Dorschner, Joseph Rainaldi, Kayla Ho, Jenny Kezios, John P Nolan, Prashant Mali, Todd Costantini, Brian P Eliceiri
{"title":"根据 miRNA 有效载荷和细胞类型特异性系谱图确定促进伤口愈合的细胞外囊泡的活性。","authors":"Dong Jun Park, Wooil Choi, Sakeef Sayeed, Robert A Dorschner, Joseph Rainaldi, Kayla Ho, Jenny Kezios, John P Nolan, Prashant Mali, Todd Costantini, Brian P Eliceiri","doi":"10.1016/j.ymthe.2024.02.019","DOIUrl":null,"url":null,"abstract":"<p><p>Small extracellular vesicles (EVs) are released by cells and deliver biologically active payloads to coordinate the response of multiple cell types in cutaneous wound healing. Here we used a cutaneous injury model as a donor of pro-reparative EVs to treat recipient diabetic obese mice, a model of impaired wound healing. We established a functional screen for microRNAs (miRNAs) that increased the pro-reparative activity of EVs and identified a down-regulation of miR-425-5p in EVs in vivo and in vitro associated with the regulation of adiponectin. We tested a cell type-specific reporter of a tetraspanin CD9 fusion with GFP to lineage map the release of EVs from macrophages in the wound bed, based on the expression of miR-425-5p in macrophage-derived EVs and the abundance of macrophages in EV donor sites. Analysis of different promoters demonstrated that EV release under the control of a macrophage-specific promoter was most abundant and that these EVs were internalized by dermal fibroblasts. These findings suggested that pro-reparative EVs deliver miRNAs, such as miR-425-5p, that stimulate the expression of adiponectin that has insulin-sensitizing properties. We propose that EVs promote intercellular signaling between cell layers in the skin to resolve inflammation, induce proliferation of basal keratinocytes, and accelerate wound closure.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":null,"pages":null},"PeriodicalIF":12.1000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Defining the activity of pro-reparative extracellular vesicles in wound healing based on miRNA payloads and cell type-specific lineage mapping.\",\"authors\":\"Dong Jun Park, Wooil Choi, Sakeef Sayeed, Robert A Dorschner, Joseph Rainaldi, Kayla Ho, Jenny Kezios, John P Nolan, Prashant Mali, Todd Costantini, Brian P Eliceiri\",\"doi\":\"10.1016/j.ymthe.2024.02.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Small extracellular vesicles (EVs) are released by cells and deliver biologically active payloads to coordinate the response of multiple cell types in cutaneous wound healing. Here we used a cutaneous injury model as a donor of pro-reparative EVs to treat recipient diabetic obese mice, a model of impaired wound healing. We established a functional screen for microRNAs (miRNAs) that increased the pro-reparative activity of EVs and identified a down-regulation of miR-425-5p in EVs in vivo and in vitro associated with the regulation of adiponectin. We tested a cell type-specific reporter of a tetraspanin CD9 fusion with GFP to lineage map the release of EVs from macrophages in the wound bed, based on the expression of miR-425-5p in macrophage-derived EVs and the abundance of macrophages in EV donor sites. Analysis of different promoters demonstrated that EV release under the control of a macrophage-specific promoter was most abundant and that these EVs were internalized by dermal fibroblasts. These findings suggested that pro-reparative EVs deliver miRNAs, such as miR-425-5p, that stimulate the expression of adiponectin that has insulin-sensitizing properties. We propose that EVs promote intercellular signaling between cell layers in the skin to resolve inflammation, induce proliferation of basal keratinocytes, and accelerate wound closure.</p>\",\"PeriodicalId\":19020,\"journal\":{\"name\":\"Molecular Therapy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ymthe.2024.02.019\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ymthe.2024.02.019","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

细胞外小泡(EVs)是由细胞释放的,可传递具有生物活性的有效载荷,协调皮肤伤口愈合过程中多种细胞类型的反应。在这里,我们利用皮肤损伤模型作为促复原 EVs 的供体,来治疗受体糖尿病肥胖小鼠(一种伤口愈合受损的模型)。我们建立了一个功能性筛选,以寻找能提高 EVs 促进修复活性的 miRNA,并发现体内和体外 EVs 中 miR-425-5p 的下调与脂肪连素的调节有关。我们测试了四泛素 CD9 与 GFP 融合的细胞类型特异性报告物,根据巨噬细胞来源的 EVs 中 miR-425-5p 的表达和 EV 供体部位巨噬细胞的丰度,绘制了伤口床巨噬细胞释放 EVs 的系谱图。对不同启动子的分析表明,在巨噬细胞特异性启动子控制下的EV释放量最大,而且这些EV被真皮成纤维细胞内化。这些研究结果表明,促还原性 EV 可传递 miRNA(如 miR-425-5p),从而刺激具有胰岛素敏感特性的脂肪连蛋白的表达。我们认为,EVs 可促进皮肤细胞层之间的细胞间信号传递,从而消炎、诱导基底角质细胞增殖并加速伤口闭合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Defining the activity of pro-reparative extracellular vesicles in wound healing based on miRNA payloads and cell type-specific lineage mapping.

Small extracellular vesicles (EVs) are released by cells and deliver biologically active payloads to coordinate the response of multiple cell types in cutaneous wound healing. Here we used a cutaneous injury model as a donor of pro-reparative EVs to treat recipient diabetic obese mice, a model of impaired wound healing. We established a functional screen for microRNAs (miRNAs) that increased the pro-reparative activity of EVs and identified a down-regulation of miR-425-5p in EVs in vivo and in vitro associated with the regulation of adiponectin. We tested a cell type-specific reporter of a tetraspanin CD9 fusion with GFP to lineage map the release of EVs from macrophages in the wound bed, based on the expression of miR-425-5p in macrophage-derived EVs and the abundance of macrophages in EV donor sites. Analysis of different promoters demonstrated that EV release under the control of a macrophage-specific promoter was most abundant and that these EVs were internalized by dermal fibroblasts. These findings suggested that pro-reparative EVs deliver miRNAs, such as miR-425-5p, that stimulate the expression of adiponectin that has insulin-sensitizing properties. We propose that EVs promote intercellular signaling between cell layers in the skin to resolve inflammation, induce proliferation of basal keratinocytes, and accelerate wound closure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Therapy
Molecular Therapy 医学-生物工程与应用微生物
CiteScore
19.20
自引率
3.20%
发文量
357
审稿时长
3 months
期刊介绍: Molecular Therapy is the leading journal for research in gene transfer, vector development, stem cell manipulation, and therapeutic interventions. It covers a broad spectrum of topics including genetic and acquired disease correction, vaccine development, pre-clinical validation, safety/efficacy studies, and clinical trials. With a focus on advancing genetics, medicine, and biotechnology, Molecular Therapy publishes peer-reviewed research, reviews, and commentaries to showcase the latest advancements in the field. With an impressive impact factor of 12.4 in 2022, it continues to attract top-tier contributions.
期刊最新文献
Engineering a solution for allogeneic CAR-T rejection. Targeting Rap1b signaling cascades with CDNF: Modulating Platelet Activation, Regulating Plasma Oxylipins and Mitigating Reperfusion Injury in stroke. A CD25×TIGIT bispecific antibody induces anti-tumor activity through selective intratumoral Treg cell depletion. A chimeric anti-inflammatory and anti-vascularization immunomodulator prevents high-risk corneal transplantation rejection via ex vivo gene therapy. Case study of CD19-directed chimeric antigen receptor T-cell therapy in a subject with immune-mediate necrotizing myopathy treated in the RESET-Myositis™ phase I/II trial.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1