{"title":"在最近同步的同伴注视下抑制反应会增强自我监控能力:功能性近红外光谱的证据。","authors":"R Moffat, N Caruana, E S Cross","doi":"10.1098/rsob.230382","DOIUrl":null,"url":null,"abstract":"<p><p>Developing motor synchrony with a peer (through interventions such as the mirror game) can yield collaborative, cognitive and social benefits. However, it is also well established that observation by an audience can improve cognition. The combined and relative advantages offered by motor synchronization and audience effects are not yet understood. It is important to address this gap to determine the extent to which synchronizing activities might interact with the positive effects of an audience. In this preregistered study, we investigate the extent to which response inhibition may be improved when observed by a peer after motor synchronization with this peer. We compare behavioural and cortical (functional near-infrared spectroscopy; fNIRS) measures of inhibition between synchronized and non-synchronized dyads and find that the presence of a synchronized peer-audience introduces a speed-accuracy trade-off, consisting of slower reaction times and improved accuracy. This co-occurs with cortical activation in bilateral inferior frontal and middle prefrontal cortices, which are implicated in monitoring and maintenance of social alignment. Our findings have implications for carers and support people, who may benefit from synchronizing activities for rehabilitating inhibition and social skills in clinical settings.</p>","PeriodicalId":19629,"journal":{"name":"Open Biology","volume":"14 2","pages":"230382"},"PeriodicalIF":4.5000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10878812/pdf/","citationCount":"0","resultStr":"{\"title\":\"Inhibiting responses under the watch of a recently synchronized peer increases self-monitoring: evidence from functional near-infrared spectroscopy.\",\"authors\":\"R Moffat, N Caruana, E S Cross\",\"doi\":\"10.1098/rsob.230382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Developing motor synchrony with a peer (through interventions such as the mirror game) can yield collaborative, cognitive and social benefits. However, it is also well established that observation by an audience can improve cognition. The combined and relative advantages offered by motor synchronization and audience effects are not yet understood. It is important to address this gap to determine the extent to which synchronizing activities might interact with the positive effects of an audience. In this preregistered study, we investigate the extent to which response inhibition may be improved when observed by a peer after motor synchronization with this peer. We compare behavioural and cortical (functional near-infrared spectroscopy; fNIRS) measures of inhibition between synchronized and non-synchronized dyads and find that the presence of a synchronized peer-audience introduces a speed-accuracy trade-off, consisting of slower reaction times and improved accuracy. This co-occurs with cortical activation in bilateral inferior frontal and middle prefrontal cortices, which are implicated in monitoring and maintenance of social alignment. Our findings have implications for carers and support people, who may benefit from synchronizing activities for rehabilitating inhibition and social skills in clinical settings.</p>\",\"PeriodicalId\":19629,\"journal\":{\"name\":\"Open Biology\",\"volume\":\"14 2\",\"pages\":\"230382\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10878812/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1098/rsob.230382\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rsob.230382","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Inhibiting responses under the watch of a recently synchronized peer increases self-monitoring: evidence from functional near-infrared spectroscopy.
Developing motor synchrony with a peer (through interventions such as the mirror game) can yield collaborative, cognitive and social benefits. However, it is also well established that observation by an audience can improve cognition. The combined and relative advantages offered by motor synchronization and audience effects are not yet understood. It is important to address this gap to determine the extent to which synchronizing activities might interact with the positive effects of an audience. In this preregistered study, we investigate the extent to which response inhibition may be improved when observed by a peer after motor synchronization with this peer. We compare behavioural and cortical (functional near-infrared spectroscopy; fNIRS) measures of inhibition between synchronized and non-synchronized dyads and find that the presence of a synchronized peer-audience introduces a speed-accuracy trade-off, consisting of slower reaction times and improved accuracy. This co-occurs with cortical activation in bilateral inferior frontal and middle prefrontal cortices, which are implicated in monitoring and maintenance of social alignment. Our findings have implications for carers and support people, who may benefit from synchronizing activities for rehabilitating inhibition and social skills in clinical settings.
期刊介绍:
Open Biology is an online journal that welcomes original, high impact research in cell and developmental biology, molecular and structural biology, biochemistry, neuroscience, immunology, microbiology and genetics.