{"title":"斑马鱼在了解分子病理生理学、疾病建模和开发有效治疗 Rett 综合症方面的作用。","authors":"Subrata Pramanik, Asis Bala, Ajay Pradhan","doi":"10.1002/jgm.3677","DOIUrl":null,"url":null,"abstract":"<p>Rett syndrome (RTT) is a rare but dreadful X-linked genetic disease that mainly affects young girls. It is a neurological disease that affects nerve cell development and function, resulting in severe motor and intellectual disabilities. To date, no cure is available for treating this disease. In 90% of the cases, RTT is caused by a mutation in methyl-CpG-binding protein 2 (MECP2), a transcription factor involved in the repression and activation of transcription. MECP2 is known to regulate several target genes and is involved in different physiological functions. Mouse models exhibit a broad range of phenotypes in recapitulating human RTT symptoms; however, understanding the disease mechanisms remains incomplete, and many potential RTT treatments developed in mouse models have not shown translational effectiveness in human trials. Recent data hint that the zebrafish model emulates similar disrupted neurological functions following mutation of the <i>mecp2</i> gene. This suggests that zebrafish can be used to understand the onset and progression of RTT pathophysiology and develop a possible cure. In this review, we elaborate on the molecular basis of RTT pathophysiology in humans and model organisms, including rodents and zebrafish, focusing on the zebrafish model to understand the molecular pathophysiology and the development of therapeutic strategies for RTT. Finally, we propose a rational treatment strategy, including antisense oligonucleotides, small interfering RNA technology and induced pluripotent stem cell-derived cell therapy.</p>","PeriodicalId":56122,"journal":{"name":"Journal of Gene Medicine","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zebrafish in understanding molecular pathophysiology, disease modeling, and developing effective treatments for Rett syndrome\",\"authors\":\"Subrata Pramanik, Asis Bala, Ajay Pradhan\",\"doi\":\"10.1002/jgm.3677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Rett syndrome (RTT) is a rare but dreadful X-linked genetic disease that mainly affects young girls. It is a neurological disease that affects nerve cell development and function, resulting in severe motor and intellectual disabilities. To date, no cure is available for treating this disease. In 90% of the cases, RTT is caused by a mutation in methyl-CpG-binding protein 2 (MECP2), a transcription factor involved in the repression and activation of transcription. MECP2 is known to regulate several target genes and is involved in different physiological functions. Mouse models exhibit a broad range of phenotypes in recapitulating human RTT symptoms; however, understanding the disease mechanisms remains incomplete, and many potential RTT treatments developed in mouse models have not shown translational effectiveness in human trials. Recent data hint that the zebrafish model emulates similar disrupted neurological functions following mutation of the <i>mecp2</i> gene. This suggests that zebrafish can be used to understand the onset and progression of RTT pathophysiology and develop a possible cure. In this review, we elaborate on the molecular basis of RTT pathophysiology in humans and model organisms, including rodents and zebrafish, focusing on the zebrafish model to understand the molecular pathophysiology and the development of therapeutic strategies for RTT. Finally, we propose a rational treatment strategy, including antisense oligonucleotides, small interfering RNA technology and induced pluripotent stem cell-derived cell therapy.</p>\",\"PeriodicalId\":56122,\"journal\":{\"name\":\"Journal of Gene Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Gene Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgm.3677\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Gene Medicine","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgm.3677","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Zebrafish in understanding molecular pathophysiology, disease modeling, and developing effective treatments for Rett syndrome
Rett syndrome (RTT) is a rare but dreadful X-linked genetic disease that mainly affects young girls. It is a neurological disease that affects nerve cell development and function, resulting in severe motor and intellectual disabilities. To date, no cure is available for treating this disease. In 90% of the cases, RTT is caused by a mutation in methyl-CpG-binding protein 2 (MECP2), a transcription factor involved in the repression and activation of transcription. MECP2 is known to regulate several target genes and is involved in different physiological functions. Mouse models exhibit a broad range of phenotypes in recapitulating human RTT symptoms; however, understanding the disease mechanisms remains incomplete, and many potential RTT treatments developed in mouse models have not shown translational effectiveness in human trials. Recent data hint that the zebrafish model emulates similar disrupted neurological functions following mutation of the mecp2 gene. This suggests that zebrafish can be used to understand the onset and progression of RTT pathophysiology and develop a possible cure. In this review, we elaborate on the molecular basis of RTT pathophysiology in humans and model organisms, including rodents and zebrafish, focusing on the zebrafish model to understand the molecular pathophysiology and the development of therapeutic strategies for RTT. Finally, we propose a rational treatment strategy, including antisense oligonucleotides, small interfering RNA technology and induced pluripotent stem cell-derived cell therapy.
期刊介绍:
The aims and scope of The Journal of Gene Medicine include cutting-edge science of gene transfer and its applications in gene and cell therapy, genome editing with precision nucleases, epigenetic modifications of host genome by small molecules, siRNA, microRNA and other noncoding RNAs as therapeutic gene-modulating agents or targets, biomarkers for precision medicine, and gene-based prognostic/diagnostic studies.
Key areas of interest are the design of novel synthetic and viral vectors, novel therapeutic nucleic acids such as mRNA, modified microRNAs and siRNAs, antagomirs, aptamers, antisense and exon-skipping agents, refined genome editing tools using nucleic acid /protein combinations, physically or biologically targeted delivery and gene modulation, ex vivo or in vivo pharmacological studies including animal models, and human clinical trials.
Papers presenting research into the mechanisms underlying transfer and action of gene medicines, the application of the new technologies for stem cell modification or nucleic acid based vaccines, the identification of new genetic or epigenetic variations as biomarkers to direct precision medicine, and the preclinical/clinical development of gene/expression signatures indicative of diagnosis or predictive of prognosis are also encouraged.