{"title":"通过细胞计数监测拭子的使用效率。","authors":"Madison Nolan BSc (Hons), Adrian Linacre DPhil","doi":"10.1111/1556-4029.15495","DOIUrl":null,"url":null,"abstract":"<p>Plastic bags, such as ziplock bags, have been used to transport illicit materials worldwide; however, very few studies have tried to optimize the recovery of DNA from these items. This study reports on the best combination of swabs and moistening solution for the greatest recovery of cellular material from ziplock bags. Five swabs, two different variations of Copan Diagnostics nylon 4N6FLOQSwabs, one Medical Wire rayon DRYSWAB, one IsoHelix rayon swab, and one Livingstone cotton swab, were evaluated with two moistening solutions, Triton X-100 in either distilled water or isopropanol. Fingermarks were deposited on ziplock bags and stained with Diamond™ Nucleic Acid Dye to allow visualization of the cells pre- and post-swabbing to determine the number of cells recovered. Based on cell counting data, swabs moistened with Triton X-100 in distilled water performed better than those moistened with isopropanol. Livingstone cotton swabs had the worst recovery of cellular material, while the other swabs tested had no significant difference in their respective solutions. A comparison of the best three swabs for cellular recovery yielded no differences in the DNA concentration extracted. A linear relationship was observed between the log number of cells recovered by swabbing and the DNA concentration following extraction and quantification. The process of monitoring cell collection using fluorescence microscopy on ziplock bags allowed evaluation of swabbing efficacy. Additionally, this study highlights the ability to evaluate cellular recovery independently of traditional extraction, quantification, or profiling techniques which may unequally affect samples.</p>","PeriodicalId":15743,"journal":{"name":"Journal of forensic sciences","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1556-4029.15495","citationCount":"0","resultStr":"{\"title\":\"Cell counting to monitor swab efficiency\",\"authors\":\"Madison Nolan BSc (Hons), Adrian Linacre DPhil\",\"doi\":\"10.1111/1556-4029.15495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Plastic bags, such as ziplock bags, have been used to transport illicit materials worldwide; however, very few studies have tried to optimize the recovery of DNA from these items. This study reports on the best combination of swabs and moistening solution for the greatest recovery of cellular material from ziplock bags. Five swabs, two different variations of Copan Diagnostics nylon 4N6FLOQSwabs, one Medical Wire rayon DRYSWAB, one IsoHelix rayon swab, and one Livingstone cotton swab, were evaluated with two moistening solutions, Triton X-100 in either distilled water or isopropanol. Fingermarks were deposited on ziplock bags and stained with Diamond™ Nucleic Acid Dye to allow visualization of the cells pre- and post-swabbing to determine the number of cells recovered. Based on cell counting data, swabs moistened with Triton X-100 in distilled water performed better than those moistened with isopropanol. Livingstone cotton swabs had the worst recovery of cellular material, while the other swabs tested had no significant difference in their respective solutions. A comparison of the best three swabs for cellular recovery yielded no differences in the DNA concentration extracted. A linear relationship was observed between the log number of cells recovered by swabbing and the DNA concentration following extraction and quantification. The process of monitoring cell collection using fluorescence microscopy on ziplock bags allowed evaluation of swabbing efficacy. Additionally, this study highlights the ability to evaluate cellular recovery independently of traditional extraction, quantification, or profiling techniques which may unequally affect samples.</p>\",\"PeriodicalId\":15743,\"journal\":{\"name\":\"Journal of forensic sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1556-4029.15495\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of forensic sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1556-4029.15495\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, LEGAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of forensic sciences","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1556-4029.15495","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, LEGAL","Score":null,"Total":0}
引用次数: 0
摘要
塑料袋(如密封袋)一直被用于在全球范围内运输非法物品;然而,很少有研究尝试优化从这些物品中回收 DNA 的过程。本研究报告了从密封袋中最大限度地回收细胞材料的拭子和湿润液的最佳组合。对五种棉签(两种不同的 Copan Diagnostics 尼龙 4N6FLOQSwabs 棉花签、一种 Medical Wire 人造纤维 DRYSWAB 棉花签、一种 IsoHelix 人造纤维棉签和一种 Livingstone 棉花签)与两种湿润液(蒸馏水或异丙醇中的 Triton X-100)进行了评估。在密封袋上留下指痕,并用 Diamond™ 核酸染料染色,以便观察拭擦前后的细胞,从而确定回收细胞的数量。根据细胞计数数据,用蒸馏水中的 Triton X-100 润湿的棉签比用异丙醇润湿的棉签效果更好。利文斯通棉拭子的细胞物质回收率最差,而其他被测棉拭子在各自的溶液中没有明显差异。对细胞回收率最好的三种棉签进行比较后发现,它们提取的 DNA 浓度没有差异。通过拭子回收的细胞对数与提取和定量后的 DNA 浓度之间呈线性关系。在密封袋上使用荧光显微镜监测细胞收集过程,可以评估拭擦的效果。此外,这项研究还强调了独立于传统提取、定量或分析技术评估细胞回收率的能力,因为传统提取、定量或分析技术可能会对样本造成不平等的影响。
Plastic bags, such as ziplock bags, have been used to transport illicit materials worldwide; however, very few studies have tried to optimize the recovery of DNA from these items. This study reports on the best combination of swabs and moistening solution for the greatest recovery of cellular material from ziplock bags. Five swabs, two different variations of Copan Diagnostics nylon 4N6FLOQSwabs, one Medical Wire rayon DRYSWAB, one IsoHelix rayon swab, and one Livingstone cotton swab, were evaluated with two moistening solutions, Triton X-100 in either distilled water or isopropanol. Fingermarks were deposited on ziplock bags and stained with Diamond™ Nucleic Acid Dye to allow visualization of the cells pre- and post-swabbing to determine the number of cells recovered. Based on cell counting data, swabs moistened with Triton X-100 in distilled water performed better than those moistened with isopropanol. Livingstone cotton swabs had the worst recovery of cellular material, while the other swabs tested had no significant difference in their respective solutions. A comparison of the best three swabs for cellular recovery yielded no differences in the DNA concentration extracted. A linear relationship was observed between the log number of cells recovered by swabbing and the DNA concentration following extraction and quantification. The process of monitoring cell collection using fluorescence microscopy on ziplock bags allowed evaluation of swabbing efficacy. Additionally, this study highlights the ability to evaluate cellular recovery independently of traditional extraction, quantification, or profiling techniques which may unequally affect samples.
期刊介绍:
The Journal of Forensic Sciences (JFS) is the official publication of the American Academy of Forensic Sciences (AAFS). It is devoted to the publication of original investigations, observations, scholarly inquiries and reviews in various branches of the forensic sciences. These include anthropology, criminalistics, digital and multimedia sciences, engineering and applied sciences, pathology/biology, psychiatry and behavioral science, jurisprudence, odontology, questioned documents, and toxicology. Similar submissions dealing with forensic aspects of other sciences and the social sciences are also accepted, as are submissions dealing with scientifically sound emerging science disciplines. The content and/or views expressed in the JFS are not necessarily those of the AAFS, the JFS Editorial Board, the organizations with which authors are affiliated, or the publisher of JFS. All manuscript submissions are double-blind peer-reviewed.