{"title":"用于预测提前期的贝叶斯 Dirichlet 自动回归移动平均模型","authors":"","doi":"10.1016/j.ijforecast.2024.01.004","DOIUrl":null,"url":null,"abstract":"<div><p>In the hospitality industry, lead time data are a form of compositional data that are crucial for business planning, resource allocation, and staffing. Hospitality businesses accrue fees daily, but recognition of these fees is often deferred. This paper presents a novel class of Bayesian time series models, the Bayesian Dirichlet auto-regressive moving average (B-DARMA) model, designed specifically for compositional time series. The model is motivated by the analysis of five years of daily fees data from Airbnb, with the aim of forecasting the proportion of future fees that will be recognized in 12 consecutive monthly intervals. Each day’s compositional data are modeled as Dirichlet distributed, given the mean and a scale parameter. The mean is modeled using a vector auto-regressive moving average process, which depends on previous compositional data, previous compositional parameters, and daily covariates. The B-DARMA model provides a robust solution for analyzing large compositional vectors and time series of varying lengths. It offers efficiency gains through the choice of priors, yields interpretable parameters for inference, and produces reasonable forecasts. The paper also explores the use of normal and horseshoe priors for the vector auto-regressive and vector moving average coefficients, and for regression coefficients. The efficacy of the B-DARMA model is demonstrated through simulation studies and an analysis of Airbnb data.</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0169207024000049/pdfft?md5=8f990fc55b20d6580d627b9419dc4176&pid=1-s2.0-S0169207024000049-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A Bayesian Dirichlet auto-regressive moving average model for forecasting lead times\",\"authors\":\"\",\"doi\":\"10.1016/j.ijforecast.2024.01.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the hospitality industry, lead time data are a form of compositional data that are crucial for business planning, resource allocation, and staffing. Hospitality businesses accrue fees daily, but recognition of these fees is often deferred. This paper presents a novel class of Bayesian time series models, the Bayesian Dirichlet auto-regressive moving average (B-DARMA) model, designed specifically for compositional time series. The model is motivated by the analysis of five years of daily fees data from Airbnb, with the aim of forecasting the proportion of future fees that will be recognized in 12 consecutive monthly intervals. Each day’s compositional data are modeled as Dirichlet distributed, given the mean and a scale parameter. The mean is modeled using a vector auto-regressive moving average process, which depends on previous compositional data, previous compositional parameters, and daily covariates. The B-DARMA model provides a robust solution for analyzing large compositional vectors and time series of varying lengths. It offers efficiency gains through the choice of priors, yields interpretable parameters for inference, and produces reasonable forecasts. The paper also explores the use of normal and horseshoe priors for the vector auto-regressive and vector moving average coefficients, and for regression coefficients. The efficacy of the B-DARMA model is demonstrated through simulation studies and an analysis of Airbnb data.</p></div>\",\"PeriodicalId\":14061,\"journal\":{\"name\":\"International Journal of Forecasting\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0169207024000049/pdfft?md5=8f990fc55b20d6580d627b9419dc4176&pid=1-s2.0-S0169207024000049-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Forecasting\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169207024000049\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169207024000049","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
A Bayesian Dirichlet auto-regressive moving average model for forecasting lead times
In the hospitality industry, lead time data are a form of compositional data that are crucial for business planning, resource allocation, and staffing. Hospitality businesses accrue fees daily, but recognition of these fees is often deferred. This paper presents a novel class of Bayesian time series models, the Bayesian Dirichlet auto-regressive moving average (B-DARMA) model, designed specifically for compositional time series. The model is motivated by the analysis of five years of daily fees data from Airbnb, with the aim of forecasting the proportion of future fees that will be recognized in 12 consecutive monthly intervals. Each day’s compositional data are modeled as Dirichlet distributed, given the mean and a scale parameter. The mean is modeled using a vector auto-regressive moving average process, which depends on previous compositional data, previous compositional parameters, and daily covariates. The B-DARMA model provides a robust solution for analyzing large compositional vectors and time series of varying lengths. It offers efficiency gains through the choice of priors, yields interpretable parameters for inference, and produces reasonable forecasts. The paper also explores the use of normal and horseshoe priors for the vector auto-regressive and vector moving average coefficients, and for regression coefficients. The efficacy of the B-DARMA model is demonstrated through simulation studies and an analysis of Airbnb data.
期刊介绍:
The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.