{"title":"各种材料的光滑管和三维凹陷管中的冷凝传热","authors":"Wei Li","doi":"10.1615/jenhheattransf.2024050485","DOIUrl":null,"url":null,"abstract":"The heat transfer and pressure drop of R410A and R32 within a smooth and an enhanced dimpled tube were measured for mass fluxes from 100 kg m−2 s−1 to 400 kg m−2 s−1, average vapor qualities between 0.2 and 0.8, and saturation temperatures between 35℃ and 45℃.dimpled. The test section length was 2 meters, and the outer and inner diameters of the tubes were 9.52 and 8.32 mm, respectively. The inner surface of the enhanced tube was dimpled. Three dimpled tubes and three smooth tubes, differing by material (copper, aluminum, and stainless steel) were tested to examine the material effect. The measured condensation heat transfer coefficient (HTC) for the copper smooth tube was between 1.10 to 1.16 times higher than that of the aluminum, and likewise, between 1.19 to 1.31 times higher than that of the stainless-steel tube. Similarly, the condensation HTC for the copper dimpled tube was between 1.06 to 1.15 times higher than that of the aluminum dimpled tube, and between 1.26 to 1.38 times higher than that of stainless-steel tube dimpled tube. In general, and the condensation HTC for R32 was greater than that for R410A owed mainly to the greater liquid thermal conductivity of R32. Flow patterns were observed for different vapor qualities and use to establish corresponding heat transfer mechanisms. Finally, a new correlation for dimpled tubes was proposed based a modified smooth tube correlation, which predicted the measurements to within 20 %.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Condensation heat transfer in smooth and three-dimensional dimpled tubes of various materials\",\"authors\":\"Wei Li\",\"doi\":\"10.1615/jenhheattransf.2024050485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The heat transfer and pressure drop of R410A and R32 within a smooth and an enhanced dimpled tube were measured for mass fluxes from 100 kg m−2 s−1 to 400 kg m−2 s−1, average vapor qualities between 0.2 and 0.8, and saturation temperatures between 35℃ and 45℃.dimpled. The test section length was 2 meters, and the outer and inner diameters of the tubes were 9.52 and 8.32 mm, respectively. The inner surface of the enhanced tube was dimpled. Three dimpled tubes and three smooth tubes, differing by material (copper, aluminum, and stainless steel) were tested to examine the material effect. The measured condensation heat transfer coefficient (HTC) for the copper smooth tube was between 1.10 to 1.16 times higher than that of the aluminum, and likewise, between 1.19 to 1.31 times higher than that of the stainless-steel tube. Similarly, the condensation HTC for the copper dimpled tube was between 1.06 to 1.15 times higher than that of the aluminum dimpled tube, and between 1.26 to 1.38 times higher than that of stainless-steel tube dimpled tube. In general, and the condensation HTC for R32 was greater than that for R410A owed mainly to the greater liquid thermal conductivity of R32. Flow patterns were observed for different vapor qualities and use to establish corresponding heat transfer mechanisms. Finally, a new correlation for dimpled tubes was proposed based a modified smooth tube correlation, which predicted the measurements to within 20 %.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1615/jenhheattransf.2024050485\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/jenhheattransf.2024050485","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Condensation heat transfer in smooth and three-dimensional dimpled tubes of various materials
The heat transfer and pressure drop of R410A and R32 within a smooth and an enhanced dimpled tube were measured for mass fluxes from 100 kg m−2 s−1 to 400 kg m−2 s−1, average vapor qualities between 0.2 and 0.8, and saturation temperatures between 35℃ and 45℃.dimpled. The test section length was 2 meters, and the outer and inner diameters of the tubes were 9.52 and 8.32 mm, respectively. The inner surface of the enhanced tube was dimpled. Three dimpled tubes and three smooth tubes, differing by material (copper, aluminum, and stainless steel) were tested to examine the material effect. The measured condensation heat transfer coefficient (HTC) for the copper smooth tube was between 1.10 to 1.16 times higher than that of the aluminum, and likewise, between 1.19 to 1.31 times higher than that of the stainless-steel tube. Similarly, the condensation HTC for the copper dimpled tube was between 1.06 to 1.15 times higher than that of the aluminum dimpled tube, and between 1.26 to 1.38 times higher than that of stainless-steel tube dimpled tube. In general, and the condensation HTC for R32 was greater than that for R410A owed mainly to the greater liquid thermal conductivity of R32. Flow patterns were observed for different vapor qualities and use to establish corresponding heat transfer mechanisms. Finally, a new correlation for dimpled tubes was proposed based a modified smooth tube correlation, which predicted the measurements to within 20 %.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.