{"title":"具有强阻尼效应的超拉伸水凝胶","authors":"Ming Ge, Lidong Zhang","doi":"10.1038/s41428-024-00894-w","DOIUrl":null,"url":null,"abstract":"Hydrogels can be stretched to several tens or even hundreds of times their original lengths, making them suitable for various applications. They have shown great potential for use in sensors and wearable devices. Although many attempts have been made to develop highly stretchable hydrogels, combining high stretchability and excellent damping remains a challenge. This study reports a method that significantly improved the stretchability and damping properties of hydrogels. The innovation is the replacement of traditional short-chain crosslinkers, such as N,N-methylenebis(acrylamide) (MBA), with long-chain crosslinkers. With increasing chain lengths, the spaces in the networks became larger, which reduced the interactions between the molecular chains in the network. As a result, the molecular chains of the network could slide when stretched, which greatly increased the mechanical elongation and enabled damping by the hydrogel (up to 85%). The maximum elongation reached 21800%, with a toughness of 11.32 MJ m−3. To the best of our knowledge, this elongation is superior to those in all previous reports. Our results provide a new approach for the development of highly stretchable and damping hydrogels. This study reports a method that significantly improved the stretchability and damping properties of hydrogels. The innovation is the replacement of traditional short-chain crosslinkers, such as N,N-methylenebis(acrylamide) (MBA), with long-chain crosslinkers. As a result, the molecular chains of the network could slide when stretched, which greatly increased the mechanical elongation and enabled damping by the hydrogel (up to 85%). The maximum elongation reached 21800%, with a toughness of 11.32 MJ m−3. This study provides a new approach for the development of highly stretchable and damping hydrogels.","PeriodicalId":20302,"journal":{"name":"Polymer Journal","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrastretchable hydrogels with strong damping effects\",\"authors\":\"Ming Ge, Lidong Zhang\",\"doi\":\"10.1038/s41428-024-00894-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hydrogels can be stretched to several tens or even hundreds of times their original lengths, making them suitable for various applications. They have shown great potential for use in sensors and wearable devices. Although many attempts have been made to develop highly stretchable hydrogels, combining high stretchability and excellent damping remains a challenge. This study reports a method that significantly improved the stretchability and damping properties of hydrogels. The innovation is the replacement of traditional short-chain crosslinkers, such as N,N-methylenebis(acrylamide) (MBA), with long-chain crosslinkers. With increasing chain lengths, the spaces in the networks became larger, which reduced the interactions between the molecular chains in the network. As a result, the molecular chains of the network could slide when stretched, which greatly increased the mechanical elongation and enabled damping by the hydrogel (up to 85%). The maximum elongation reached 21800%, with a toughness of 11.32 MJ m−3. To the best of our knowledge, this elongation is superior to those in all previous reports. Our results provide a new approach for the development of highly stretchable and damping hydrogels. This study reports a method that significantly improved the stretchability and damping properties of hydrogels. The innovation is the replacement of traditional short-chain crosslinkers, such as N,N-methylenebis(acrylamide) (MBA), with long-chain crosslinkers. As a result, the molecular chains of the network could slide when stretched, which greatly increased the mechanical elongation and enabled damping by the hydrogel (up to 85%). The maximum elongation reached 21800%, with a toughness of 11.32 MJ m−3. This study provides a new approach for the development of highly stretchable and damping hydrogels.\",\"PeriodicalId\":20302,\"journal\":{\"name\":\"Polymer Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.nature.com/articles/s41428-024-00894-w\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41428-024-00894-w","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Ultrastretchable hydrogels with strong damping effects
Hydrogels can be stretched to several tens or even hundreds of times their original lengths, making them suitable for various applications. They have shown great potential for use in sensors and wearable devices. Although many attempts have been made to develop highly stretchable hydrogels, combining high stretchability and excellent damping remains a challenge. This study reports a method that significantly improved the stretchability and damping properties of hydrogels. The innovation is the replacement of traditional short-chain crosslinkers, such as N,N-methylenebis(acrylamide) (MBA), with long-chain crosslinkers. With increasing chain lengths, the spaces in the networks became larger, which reduced the interactions between the molecular chains in the network. As a result, the molecular chains of the network could slide when stretched, which greatly increased the mechanical elongation and enabled damping by the hydrogel (up to 85%). The maximum elongation reached 21800%, with a toughness of 11.32 MJ m−3. To the best of our knowledge, this elongation is superior to those in all previous reports. Our results provide a new approach for the development of highly stretchable and damping hydrogels. This study reports a method that significantly improved the stretchability and damping properties of hydrogels. The innovation is the replacement of traditional short-chain crosslinkers, such as N,N-methylenebis(acrylamide) (MBA), with long-chain crosslinkers. As a result, the molecular chains of the network could slide when stretched, which greatly increased the mechanical elongation and enabled damping by the hydrogel (up to 85%). The maximum elongation reached 21800%, with a toughness of 11.32 MJ m−3. This study provides a new approach for the development of highly stretchable and damping hydrogels.
期刊介绍:
Polymer Journal promotes research from all aspects of polymer science from anywhere in the world and aims to provide an integrated platform for scientific communication that assists the advancement of polymer science and related fields. The journal publishes Original Articles, Notes, Short Communications and Reviews.
Subject areas and topics of particular interest within the journal''s scope include, but are not limited to, those listed below:
Polymer synthesis and reactions
Polymer structures
Physical properties of polymers
Polymer surface and interfaces
Functional polymers
Supramolecular polymers
Self-assembled materials
Biopolymers and bio-related polymer materials
Polymer engineering.