作为生物色素来源的细菌及其潜在应用

IF 1.7 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS Journal of microbiological methods Pub Date : 2024-02-20 DOI:10.1016/j.mimet.2024.106907
Moitrayee Devi , Elancheran Ramakrishnan , Suresh Deka , Deep Prakash Parasar
{"title":"作为生物色素来源的细菌及其潜在应用","authors":"Moitrayee Devi ,&nbsp;Elancheran Ramakrishnan ,&nbsp;Suresh Deka ,&nbsp;Deep Prakash Parasar","doi":"10.1016/j.mimet.2024.106907","DOIUrl":null,"url":null,"abstract":"<div><p>From the prehistoric period, the utilization of pigments as colouring agents was an integral part of human life. Early people may have utilized paint for aesthetic motives, according to archaeologists. The pigments are either naturally derived or synthesized in the laboratory. Different studies reported that certain synthetic colouring compounds were toxic and had adverse health and environmental effects. Therefore, knowing the drawbacks of these synthetic colouring agents now scientists are attracted towards the harmless natural pigments. The main sources of natural pigments are plants, animals or microorganisms. Out of these natural pigments, microorganisms are the most important source for the production and application of bioactive secondary metabolites. Among all kinds of microorganisms, bacteria have specific benefits due to their short life cycle, low sensitivity to seasonal and climatic variations, ease of scaling, and ability to create pigments of various colours. Based on these physical characteristics, bacterial pigments appear to be a promising sector for novel biotechnological applications, ranging from functional food production to the development of new pharmaceuticals and biomedical therapies. This review summarizes the need for bacterial pigments, biosynthetic pathways of carotenoids and different applications of bacterial pigments.</p></div>","PeriodicalId":16409,"journal":{"name":"Journal of microbiological methods","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bacteria as a source of biopigments and their potential applications\",\"authors\":\"Moitrayee Devi ,&nbsp;Elancheran Ramakrishnan ,&nbsp;Suresh Deka ,&nbsp;Deep Prakash Parasar\",\"doi\":\"10.1016/j.mimet.2024.106907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>From the prehistoric period, the utilization of pigments as colouring agents was an integral part of human life. Early people may have utilized paint for aesthetic motives, according to archaeologists. The pigments are either naturally derived or synthesized in the laboratory. Different studies reported that certain synthetic colouring compounds were toxic and had adverse health and environmental effects. Therefore, knowing the drawbacks of these synthetic colouring agents now scientists are attracted towards the harmless natural pigments. The main sources of natural pigments are plants, animals or microorganisms. Out of these natural pigments, microorganisms are the most important source for the production and application of bioactive secondary metabolites. Among all kinds of microorganisms, bacteria have specific benefits due to their short life cycle, low sensitivity to seasonal and climatic variations, ease of scaling, and ability to create pigments of various colours. Based on these physical characteristics, bacterial pigments appear to be a promising sector for novel biotechnological applications, ranging from functional food production to the development of new pharmaceuticals and biomedical therapies. This review summarizes the need for bacterial pigments, biosynthetic pathways of carotenoids and different applications of bacterial pigments.</p></div>\",\"PeriodicalId\":16409,\"journal\":{\"name\":\"Journal of microbiological methods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of microbiological methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167701224000198\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microbiological methods","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167701224000198","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

从史前时期开始,使用颜料作为着色剂就是人类生活中不可或缺的一部分。考古学家认为,早期人类使用颜料可能是出于审美动机。颜料有天然提取的,也有在实验室合成的。不同的研究报告指出,某些合成色素化合物具有毒性,会对健康和环境造成不利影响。因此,在了解了这些合成着色剂的缺点后,科学家们开始关注无害的天然颜料。天然色素的主要来源是植物、动物或微生物。在这些天然色素中,微生物是生产和应用生物活性次生代谢产物的最重要来源。在各种微生物中,细菌因其生命周期短、对季节和气候变化的敏感性低、易于缩放以及能够产生各种颜色的色素而具有独特的优势。基于这些物理特性,细菌色素似乎是新型生物技术应用的一个前景广阔的领域,从功能性食品生产到新药物和生物医学疗法的开发,不一而足。本综述概述了对细菌色素的需求、类胡萝卜素的生物合成途径以及细菌色素的不同应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bacteria as a source of biopigments and their potential applications

From the prehistoric period, the utilization of pigments as colouring agents was an integral part of human life. Early people may have utilized paint for aesthetic motives, according to archaeologists. The pigments are either naturally derived or synthesized in the laboratory. Different studies reported that certain synthetic colouring compounds were toxic and had adverse health and environmental effects. Therefore, knowing the drawbacks of these synthetic colouring agents now scientists are attracted towards the harmless natural pigments. The main sources of natural pigments are plants, animals or microorganisms. Out of these natural pigments, microorganisms are the most important source for the production and application of bioactive secondary metabolites. Among all kinds of microorganisms, bacteria have specific benefits due to their short life cycle, low sensitivity to seasonal and climatic variations, ease of scaling, and ability to create pigments of various colours. Based on these physical characteristics, bacterial pigments appear to be a promising sector for novel biotechnological applications, ranging from functional food production to the development of new pharmaceuticals and biomedical therapies. This review summarizes the need for bacterial pigments, biosynthetic pathways of carotenoids and different applications of bacterial pigments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of microbiological methods
Journal of microbiological methods 生物-生化研究方法
CiteScore
4.30
自引率
4.50%
发文量
151
审稿时长
29 days
期刊介绍: The Journal of Microbiological Methods publishes scholarly and original articles, notes and review articles. These articles must include novel and/or state-of-the-art methods, or significant improvements to existing methods. Novel and innovative applications of current methods that are validated and useful will also be published. JMM strives for scholarship, innovation and excellence. This demands scientific rigour, the best available methods and technologies, correctly replicated experiments/tests, the inclusion of proper controls, calibrations, and the correct statistical analysis. The presentation of the data must support the interpretation of the method/approach. All aspects of microbiology are covered, except virology. These include agricultural microbiology, applied and environmental microbiology, bioassays, bioinformatics, biotechnology, biochemical microbiology, clinical microbiology, diagnostics, food monitoring and quality control microbiology, microbial genetics and genomics, geomicrobiology, microbiome methods regardless of habitat, high through-put sequencing methods and analysis, microbial pathogenesis and host responses, metabolomics, metagenomics, metaproteomics, microbial ecology and diversity, microbial physiology, microbial ultra-structure, microscopic and imaging methods, molecular microbiology, mycology, novel mathematical microbiology and modelling, parasitology, plant-microbe interactions, protein markers/profiles, proteomics, pyrosequencing, public health microbiology, radioisotopes applied to microbiology, robotics applied to microbiological methods,rumen microbiology, microbiological methods for space missions and extreme environments, sampling methods and samplers, soil and sediment microbiology, transcriptomics, veterinary microbiology, sero-diagnostics and typing/identification.
期刊最新文献
Editorial Board A TaqMan real-time PCR assay for detection of qacEΔ1 gene in Gram-negative bacteria Mycobacterium tuberculosis complex sample processing by mechanical lysis, an essential step for reliable whole genome sequencing Evaluation of protein extraction protocols for MALDI-TOF Biotyper analysis of mycobacteria Whole genome sequencing approaches for taxonomic profiling and evaluation of wastewater quality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1