基于分层排序的动态兴趣匹配并行算法

IF 3.4 3区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Journal of Parallel and Distributed Computing Pub Date : 2024-02-18 DOI:10.1016/j.jpdc.2024.104867
Wenjie Tang, Yiping Yao, Lizhen Ou, Kai Chen
{"title":"基于分层排序的动态兴趣匹配并行算法","authors":"Wenjie Tang,&nbsp;Yiping Yao,&nbsp;Lizhen Ou,&nbsp;Kai Chen","doi":"10.1016/j.jpdc.2024.104867","DOIUrl":null,"url":null,"abstract":"<div><p>Publish–subscribe communication is a fundamental service used for message-passing between decoupled applications in distributed simulation. When abundant unnecessary data transfer is introduced, interest-matching services are needed to filter irrelevant message traffic. Frequent demands during simulation execution makes interest matching a bottleneck with increased simulation scale. Contemporary algorithms built for serial processing inadequately leverage multicore processor-based parallel resources. Parallel algorithmic improvements are insufficient for large-scale simulations. Therefore, we propose a hierarchical sort-based parallel algorithm for dynamic interest matching that embeds all update and subscription regions into two full binary trees, thereby transferring the region-matching task to one of node-matching. It utilizes the association between adjacent nodes and the hierarchical relation between parent‒child nodes to eliminate redundant operations, and achieves incremental parallel matching that only compares changed regions. We analyze the time and space complexity of this process. The new algorithm performs better and is more scalable than state-of-the-art algorithms.</p></div>","PeriodicalId":54775,"journal":{"name":"Journal of Parallel and Distributed Computing","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchical sort-based parallel algorithm for dynamic interest matching\",\"authors\":\"Wenjie Tang,&nbsp;Yiping Yao,&nbsp;Lizhen Ou,&nbsp;Kai Chen\",\"doi\":\"10.1016/j.jpdc.2024.104867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Publish–subscribe communication is a fundamental service used for message-passing between decoupled applications in distributed simulation. When abundant unnecessary data transfer is introduced, interest-matching services are needed to filter irrelevant message traffic. Frequent demands during simulation execution makes interest matching a bottleneck with increased simulation scale. Contemporary algorithms built for serial processing inadequately leverage multicore processor-based parallel resources. Parallel algorithmic improvements are insufficient for large-scale simulations. Therefore, we propose a hierarchical sort-based parallel algorithm for dynamic interest matching that embeds all update and subscription regions into two full binary trees, thereby transferring the region-matching task to one of node-matching. It utilizes the association between adjacent nodes and the hierarchical relation between parent‒child nodes to eliminate redundant operations, and achieves incremental parallel matching that only compares changed regions. We analyze the time and space complexity of this process. The new algorithm performs better and is more scalable than state-of-the-art algorithms.</p></div>\",\"PeriodicalId\":54775,\"journal\":{\"name\":\"Journal of Parallel and Distributed Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Parallel and Distributed Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0743731524000315\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Parallel and Distributed Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0743731524000315","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

发布-订阅通信是分布式仿真中解耦应用程序之间消息传递的基本服务。当引入大量不必要的数据传输时,就需要兴趣匹配服务来过滤不相关的消息流量。随着仿真规模的扩大,仿真执行过程中的频繁需求使得兴趣匹配成为一个瓶颈。为串行处理而构建的当代算法无法充分利用基于多核处理器的并行资源。并行算法的改进不足以应对大规模仿真。因此,我们提出了一种基于分层排序的动态兴趣匹配并行算法,它将所有更新和订阅区域嵌入两棵完整的二叉树中,从而将区域匹配任务转移到节点匹配任务中。它利用相邻节点之间的关联和父子节点之间的层级关系来消除冗余操作,并实现只比较变化区域的增量并行匹配。我们分析了这一过程的时间和空间复杂性。与最先进的算法相比,新算法性能更好,扩展性更强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hierarchical sort-based parallel algorithm for dynamic interest matching

Publish–subscribe communication is a fundamental service used for message-passing between decoupled applications in distributed simulation. When abundant unnecessary data transfer is introduced, interest-matching services are needed to filter irrelevant message traffic. Frequent demands during simulation execution makes interest matching a bottleneck with increased simulation scale. Contemporary algorithms built for serial processing inadequately leverage multicore processor-based parallel resources. Parallel algorithmic improvements are insufficient for large-scale simulations. Therefore, we propose a hierarchical sort-based parallel algorithm for dynamic interest matching that embeds all update and subscription regions into two full binary trees, thereby transferring the region-matching task to one of node-matching. It utilizes the association between adjacent nodes and the hierarchical relation between parent‒child nodes to eliminate redundant operations, and achieves incremental parallel matching that only compares changed regions. We analyze the time and space complexity of this process. The new algorithm performs better and is more scalable than state-of-the-art algorithms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Parallel and Distributed Computing
Journal of Parallel and Distributed Computing 工程技术-计算机:理论方法
CiteScore
10.30
自引率
2.60%
发文量
172
审稿时长
12 months
期刊介绍: This international journal is directed to researchers, engineers, educators, managers, programmers, and users of computers who have particular interests in parallel processing and/or distributed computing. The Journal of Parallel and Distributed Computing publishes original research papers and timely review articles on the theory, design, evaluation, and use of parallel and/or distributed computing systems. The journal also features special issues on these topics; again covering the full range from the design to the use of our targeted systems.
期刊最新文献
SpEpistasis: A sparse approach for three-way epistasis detection Robust and Scalable Federated Learning Framework for Client Data Heterogeneity Based on Optimal Clustering Editorial Board Front Matter 1 - Full Title Page (regular issues)/Special Issue Title page (special issues) Survey of federated learning in intrusion detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1