基于注意力和特征互补融合的深度神经网络,用于小样本合成孔径雷达图像分类

IF 1.4 4区 地球科学 Q4 ENVIRONMENTAL SCIENCES Journal of Applied Remote Sensing Pub Date : 2024-02-01 DOI:10.1117/1.jrs.18.014519
Xiaoning Liu, Furong Shi, Haixia Xu, Liming Yuan, Xianbin Wen
{"title":"基于注意力和特征互补融合的深度神经网络,用于小样本合成孔径雷达图像分类","authors":"Xiaoning Liu, Furong Shi, Haixia Xu, Liming Yuan, Xianbin Wen","doi":"10.1117/1.jrs.18.014519","DOIUrl":null,"url":null,"abstract":"In recent years, methods based on convolutional neural networks (CNNs) have achieved significant results in the problem of target classification of synthetic aperture radar (SAR) images. However, the challenges of SAR image data labeling and the characteristics of CNNs relying on a large amount of labeled data for training have seriously limited the further development of this field. In this work, we propose an approach based on attention mechanism and feature complementary fusion (AFCF-CNN) to address these challenges. First, we design and construct a feature complementary module for extracting and fusing multi-layer features, making full use of limited data and utilizing contextual information between different layers to capture more robust feature representations. Then, the attention mechanism reduces the interference of redundant background information, while it highlights the weight information of key targets in the image to further enhance the key local feature representations. Finally, experiments conducted on the moving and stationary target acquisition and recognition dataset show that our model significantly outperforms other state-of-the-art methods despite severe shortages of training data.","PeriodicalId":54879,"journal":{"name":"Journal of Applied Remote Sensing","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep neural network based on attention and feature complementary fusion for synthetic aperture radar image classification with small samples\",\"authors\":\"Xiaoning Liu, Furong Shi, Haixia Xu, Liming Yuan, Xianbin Wen\",\"doi\":\"10.1117/1.jrs.18.014519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, methods based on convolutional neural networks (CNNs) have achieved significant results in the problem of target classification of synthetic aperture radar (SAR) images. However, the challenges of SAR image data labeling and the characteristics of CNNs relying on a large amount of labeled data for training have seriously limited the further development of this field. In this work, we propose an approach based on attention mechanism and feature complementary fusion (AFCF-CNN) to address these challenges. First, we design and construct a feature complementary module for extracting and fusing multi-layer features, making full use of limited data and utilizing contextual information between different layers to capture more robust feature representations. Then, the attention mechanism reduces the interference of redundant background information, while it highlights the weight information of key targets in the image to further enhance the key local feature representations. Finally, experiments conducted on the moving and stationary target acquisition and recognition dataset show that our model significantly outperforms other state-of-the-art methods despite severe shortages of training data.\",\"PeriodicalId\":54879,\"journal\":{\"name\":\"Journal of Applied Remote Sensing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1117/1.jrs.18.014519\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.jrs.18.014519","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

近年来,基于卷积神经网络(CNN)的方法在合成孔径雷达(SAR)图像的目标分类问题上取得了重大成果。然而,SAR 图像数据标注的挑战和 CNN 依赖大量标注数据进行训练的特点严重限制了这一领域的进一步发展。在这项工作中,我们提出了一种基于注意力机制和特征互补融合(AFCF-CNN)的方法来应对这些挑战。首先,我们设计并构建了一个用于提取和融合多层特征的特征互补模块,充分利用有限的数据和不同层之间的上下文信息来捕捉更健壮的特征表征。然后,注意力机制可以减少冗余背景信息的干扰,同时突出图像中关键目标的权重信息,进一步增强关键的局部特征表征。最后,在移动和静止目标获取与识别数据集上进行的实验表明,尽管训练数据严重不足,我们的模型仍明显优于其他最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep neural network based on attention and feature complementary fusion for synthetic aperture radar image classification with small samples
In recent years, methods based on convolutional neural networks (CNNs) have achieved significant results in the problem of target classification of synthetic aperture radar (SAR) images. However, the challenges of SAR image data labeling and the characteristics of CNNs relying on a large amount of labeled data for training have seriously limited the further development of this field. In this work, we propose an approach based on attention mechanism and feature complementary fusion (AFCF-CNN) to address these challenges. First, we design and construct a feature complementary module for extracting and fusing multi-layer features, making full use of limited data and utilizing contextual information between different layers to capture more robust feature representations. Then, the attention mechanism reduces the interference of redundant background information, while it highlights the weight information of key targets in the image to further enhance the key local feature representations. Finally, experiments conducted on the moving and stationary target acquisition and recognition dataset show that our model significantly outperforms other state-of-the-art methods despite severe shortages of training data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Remote Sensing
Journal of Applied Remote Sensing 环境科学-成像科学与照相技术
CiteScore
3.40
自引率
11.80%
发文量
194
审稿时长
3 months
期刊介绍: The Journal of Applied Remote Sensing is a peer-reviewed journal that optimizes the communication of concepts, information, and progress among the remote sensing community.
期刊最新文献
Few-shot synthetic aperture radar object detection algorithm based on meta-learning and variational inference Object-based strategy for generating high-resolution four-dimensional thermal surface models of buildings based on integration of visible and thermal unmanned aerial vehicle imagery Frequent oversights in on-orbit modulation transfer function estimation of optical imager onboard EO satellites Comprehensive comparison of different gridded precipitation products over geographic regions of Türkiye Monitoring soil moisture in cotton fields with synthetic aperture radar and optical data in arid and semi-arid regions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1