非平滑优化非精确信任区域方法的局部收敛分析

IF 1.3 4区 数学 Q2 MATHEMATICS, APPLIED Optimization Letters Pub Date : 2024-02-21 DOI:10.1007/s11590-023-02092-8
Robert J. Baraldi, Drew P. Kouri
{"title":"非平滑优化非精确信任区域方法的局部收敛分析","authors":"Robert J. Baraldi, Drew P. Kouri","doi":"10.1007/s11590-023-02092-8","DOIUrl":null,"url":null,"abstract":"<p>In Baraldi (Math Program 20:1–40, 2022), we introduced an inexact trust-region algorithm for minimizing the sum of a smooth nonconvex function and a nonsmooth convex function in Hilbert space—a class of problems that is ubiquitous in data science, learning, optimal control, and inverse problems. This algorithm has demonstrated excellent performance and scalability with problem size. In this paper, we enrich the convergence analysis for this algorithm, proving strong convergence of the iterates with guaranteed rates. In particular, we demonstrate that the trust-region algorithm recovers superlinear, even quadratic, convergence rates when using a second-order Taylor approximation of the smooth objective function term.</p>","PeriodicalId":49720,"journal":{"name":"Optimization Letters","volume":"8 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local convergence analysis of an inexact trust-region method for nonsmooth optimization\",\"authors\":\"Robert J. Baraldi, Drew P. Kouri\",\"doi\":\"10.1007/s11590-023-02092-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In Baraldi (Math Program 20:1–40, 2022), we introduced an inexact trust-region algorithm for minimizing the sum of a smooth nonconvex function and a nonsmooth convex function in Hilbert space—a class of problems that is ubiquitous in data science, learning, optimal control, and inverse problems. This algorithm has demonstrated excellent performance and scalability with problem size. In this paper, we enrich the convergence analysis for this algorithm, proving strong convergence of the iterates with guaranteed rates. In particular, we demonstrate that the trust-region algorithm recovers superlinear, even quadratic, convergence rates when using a second-order Taylor approximation of the smooth objective function term.</p>\",\"PeriodicalId\":49720,\"journal\":{\"name\":\"Optimization Letters\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimization Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11590-023-02092-8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Letters","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11590-023-02092-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在《Baraldi》(Math Program 20:1-40, 2022)中,我们介绍了一种用于最小化希尔伯特空间中平滑非凸函数与非平滑凸函数之和的非精确信任区域算法--这类问题在数据科学、学习、最优控制和逆问题中无处不在。该算法表现出卓越的性能,并可随着问题规模的增大而扩展。在本文中,我们丰富了该算法的收敛性分析,证明了迭代的强收敛性和保证率。特别是,我们证明了当使用二阶泰勒近似平滑目标函数项时,信任区域算法能恢复超线性甚至二次收敛率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Local convergence analysis of an inexact trust-region method for nonsmooth optimization

In Baraldi (Math Program 20:1–40, 2022), we introduced an inexact trust-region algorithm for minimizing the sum of a smooth nonconvex function and a nonsmooth convex function in Hilbert space—a class of problems that is ubiquitous in data science, learning, optimal control, and inverse problems. This algorithm has demonstrated excellent performance and scalability with problem size. In this paper, we enrich the convergence analysis for this algorithm, proving strong convergence of the iterates with guaranteed rates. In particular, we demonstrate that the trust-region algorithm recovers superlinear, even quadratic, convergence rates when using a second-order Taylor approximation of the smooth objective function term.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optimization Letters
Optimization Letters 管理科学-应用数学
CiteScore
3.40
自引率
6.20%
发文量
116
审稿时长
9 months
期刊介绍: Optimization Letters is an international journal covering all aspects of optimization, including theory, algorithms, computational studies, and applications, and providing an outlet for rapid publication of short communications in the field. Originality, significance, quality and clarity are the essential criteria for choosing the material to be published. Optimization Letters has been expanding in all directions at an astonishing rate during the last few decades. New algorithmic and theoretical techniques have been developed, the diffusion into other disciplines has proceeded at a rapid pace, and our knowledge of all aspects of the field has grown even more profound. At the same time one of the most striking trends in optimization is the constantly increasing interdisciplinary nature of the field. Optimization Letters aims to communicate in a timely fashion all recent developments in optimization with concise short articles (limited to a total of ten journal pages). Such concise articles will be easily accessible by readers working in any aspects of optimization and wish to be informed of recent developments.
期刊最新文献
Minimizing the number of tardy jobs with generalized due-dates and position-dependent processing times A projected fixed point method for a class of vertical tensor complementarity problems The budgeted maximin share allocation problem Explicit iterative algorithms for solving the split equality problems in Hilbert spaces Convergence rate of projected subgradient method with time-varying step-sizes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1