描绘科学知识领域的流动模式

IF 3 2区 计算机科学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS EPJ Data Science Pub Date : 2024-02-20 DOI:10.1140/epjds/s13688-024-00451-8
{"title":"描绘科学知识领域的流动模式","authors":"","doi":"10.1140/epjds/s13688-024-00451-8","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>From small steps to great leaps, metaphors of spatial mobility abound to describe discovery processes. Here, we ground these ideas in formal terms by systematically studying mobility patterns in the scientific knowledge landscape. We use low-dimensional embedding techniques to create a knowledge space made up of 1.5 million articles from the fields of physics, computer science, and mathematics. By analyzing the publication histories of individual researchers, we discover patterns of scientific mobility that closely resemble physical mobility. In aggregate, the trajectories form mobility flows that can be described by a gravity model, with jumps more likely to occur in areas of high density and less likely to occur over longer distances. We identify two types of researchers from their individual mobility patterns: interdisciplinary <em>explorers</em> who pioneer new fields, and <em>exploiters</em> who are more likely to stay within their specific areas of expertise. Our results suggest that spatial mobility analysis is a valuable tool for understanding the evolution of science.</p>","PeriodicalId":11887,"journal":{"name":"EPJ Data Science","volume":"17 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Charting mobility patterns in the scientific knowledge landscape\",\"authors\":\"\",\"doi\":\"10.1140/epjds/s13688-024-00451-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>From small steps to great leaps, metaphors of spatial mobility abound to describe discovery processes. Here, we ground these ideas in formal terms by systematically studying mobility patterns in the scientific knowledge landscape. We use low-dimensional embedding techniques to create a knowledge space made up of 1.5 million articles from the fields of physics, computer science, and mathematics. By analyzing the publication histories of individual researchers, we discover patterns of scientific mobility that closely resemble physical mobility. In aggregate, the trajectories form mobility flows that can be described by a gravity model, with jumps more likely to occur in areas of high density and less likely to occur over longer distances. We identify two types of researchers from their individual mobility patterns: interdisciplinary <em>explorers</em> who pioneer new fields, and <em>exploiters</em> who are more likely to stay within their specific areas of expertise. Our results suggest that spatial mobility analysis is a valuable tool for understanding the evolution of science.</p>\",\"PeriodicalId\":11887,\"journal\":{\"name\":\"EPJ Data Science\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Data Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1140/epjds/s13688-024-00451-8\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Data Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1140/epjds/s13688-024-00451-8","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 从小步到大跃进,描述发现过程的空间流动隐喻比比皆是。在这里,我们通过系统地研究科学知识景观中的流动模式,将这些观点用形式化的术语加以表述。我们使用低维嵌入技术创建了一个由物理学、计算机科学和数学领域的 150 万篇文章组成的知识空间。通过分析单个研究人员的发表历史,我们发现了与物理流动密切相关的科学流动模式。从总体上看,这些轨迹形成了可以用重力模型描述的流动流,在高密度地区发生跳跃的可能性更大,而在较远距离上发生跳跃的可能性较小。我们从研究人员的个人流动模式中发现了两种类型的研究人员:开拓新领域的跨学科探索者和更倾向于留在其特定专业领域的开发者。我们的研究结果表明,空间流动性分析是了解科学演变的重要工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Charting mobility patterns in the scientific knowledge landscape

Abstract

From small steps to great leaps, metaphors of spatial mobility abound to describe discovery processes. Here, we ground these ideas in formal terms by systematically studying mobility patterns in the scientific knowledge landscape. We use low-dimensional embedding techniques to create a knowledge space made up of 1.5 million articles from the fields of physics, computer science, and mathematics. By analyzing the publication histories of individual researchers, we discover patterns of scientific mobility that closely resemble physical mobility. In aggregate, the trajectories form mobility flows that can be described by a gravity model, with jumps more likely to occur in areas of high density and less likely to occur over longer distances. We identify two types of researchers from their individual mobility patterns: interdisciplinary explorers who pioneer new fields, and exploiters who are more likely to stay within their specific areas of expertise. Our results suggest that spatial mobility analysis is a valuable tool for understanding the evolution of science.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EPJ Data Science
EPJ Data Science MATHEMATICS, INTERDISCIPLINARY APPLICATIONS -
CiteScore
6.10
自引率
5.60%
发文量
53
审稿时长
13 weeks
期刊介绍: EPJ Data Science covers a broad range of research areas and applications and particularly encourages contributions from techno-socio-economic systems, where it comprises those research lines that now regard the digital “tracks” of human beings as first-order objects for scientific investigation. Topics include, but are not limited to, human behavior, social interaction (including animal societies), economic and financial systems, management and business networks, socio-technical infrastructure, health and environmental systems, the science of science, as well as general risk and crisis scenario forecasting up to and including policy advice.
期刊最新文献
Estimating work engagement from online chat tools Language and the use of law are predictive of judge gender and seniority Connection between climatic change and international food prices: evidence from robust long-range cross-correlation and variable-lag transfer entropy with sliding windows approach Keep your friends close, and your enemies closer: structural properties of negative relationships on Twitter Analyzing user ideologies and shared news during the 2019 argentinian elections
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1