{"title":"描绘科学知识领域的流动模式","authors":"","doi":"10.1140/epjds/s13688-024-00451-8","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>From small steps to great leaps, metaphors of spatial mobility abound to describe discovery processes. Here, we ground these ideas in formal terms by systematically studying mobility patterns in the scientific knowledge landscape. We use low-dimensional embedding techniques to create a knowledge space made up of 1.5 million articles from the fields of physics, computer science, and mathematics. By analyzing the publication histories of individual researchers, we discover patterns of scientific mobility that closely resemble physical mobility. In aggregate, the trajectories form mobility flows that can be described by a gravity model, with jumps more likely to occur in areas of high density and less likely to occur over longer distances. We identify two types of researchers from their individual mobility patterns: interdisciplinary <em>explorers</em> who pioneer new fields, and <em>exploiters</em> who are more likely to stay within their specific areas of expertise. Our results suggest that spatial mobility analysis is a valuable tool for understanding the evolution of science.</p>","PeriodicalId":11887,"journal":{"name":"EPJ Data Science","volume":"17 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Charting mobility patterns in the scientific knowledge landscape\",\"authors\":\"\",\"doi\":\"10.1140/epjds/s13688-024-00451-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>From small steps to great leaps, metaphors of spatial mobility abound to describe discovery processes. Here, we ground these ideas in formal terms by systematically studying mobility patterns in the scientific knowledge landscape. We use low-dimensional embedding techniques to create a knowledge space made up of 1.5 million articles from the fields of physics, computer science, and mathematics. By analyzing the publication histories of individual researchers, we discover patterns of scientific mobility that closely resemble physical mobility. In aggregate, the trajectories form mobility flows that can be described by a gravity model, with jumps more likely to occur in areas of high density and less likely to occur over longer distances. We identify two types of researchers from their individual mobility patterns: interdisciplinary <em>explorers</em> who pioneer new fields, and <em>exploiters</em> who are more likely to stay within their specific areas of expertise. Our results suggest that spatial mobility analysis is a valuable tool for understanding the evolution of science.</p>\",\"PeriodicalId\":11887,\"journal\":{\"name\":\"EPJ Data Science\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Data Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1140/epjds/s13688-024-00451-8\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Data Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1140/epjds/s13688-024-00451-8","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Charting mobility patterns in the scientific knowledge landscape
Abstract
From small steps to great leaps, metaphors of spatial mobility abound to describe discovery processes. Here, we ground these ideas in formal terms by systematically studying mobility patterns in the scientific knowledge landscape. We use low-dimensional embedding techniques to create a knowledge space made up of 1.5 million articles from the fields of physics, computer science, and mathematics. By analyzing the publication histories of individual researchers, we discover patterns of scientific mobility that closely resemble physical mobility. In aggregate, the trajectories form mobility flows that can be described by a gravity model, with jumps more likely to occur in areas of high density and less likely to occur over longer distances. We identify two types of researchers from their individual mobility patterns: interdisciplinary explorers who pioneer new fields, and exploiters who are more likely to stay within their specific areas of expertise. Our results suggest that spatial mobility analysis is a valuable tool for understanding the evolution of science.
期刊介绍:
EPJ Data Science covers a broad range of research areas and applications and particularly encourages contributions from techno-socio-economic systems, where it comprises those research lines that now regard the digital “tracks” of human beings as first-order objects for scientific investigation. Topics include, but are not limited to, human behavior, social interaction (including animal societies), economic and financial systems, management and business networks, socio-technical infrastructure, health and environmental systems, the science of science, as well as general risk and crisis scenario forecasting up to and including policy advice.