{"title":"[两个相互作用刚体的全平均模型的还原、相对平衡和分岔","authors":"F. Crespo, D. E. Espejo, J. C. van der Meer","doi":"10.1137/23m158125x","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 1, Page 668-695, March 2024. <br/> Abstract.We present a geometrical description of the symmetries and reduction of the full gravitational 2-body problem after complete averaging over fast angles. Our variables allow for a well-suited formulation in action-angle type coordinates associated with the averaged angles, which provide geometric insight into the problem. After introducing extra fictitious variables and through a symplectic transformation, we move to a singularity-free quaternionic triple-chart. This choice allows for a global chart to avoid the classical singularities associated with angles and renders all the invariants as homogeneous quadratic polynomials. Additionally, it permits one to quickly write the Hamiltonian of the system in terms of the invariants and the Poisson structure at each stage of the reduction process. In contrast with existing literature, the geometrical approach of this research completely describes all the dynamical aspects of the full reduced space since it involves the relative position of the rotational and orbital angular momenta and their orientation, which has yet to be considered in previous studies. Our program includes a preliminary parametric analysis of relative equilibria and a complete description of the fibers in the reconstruction of the reduced system.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[math]-Reduction, Relative Equilibria, and Bifurcations for the Full Averaged Model of Two Interacting Rigid Bodies\",\"authors\":\"F. Crespo, D. E. Espejo, J. C. van der Meer\",\"doi\":\"10.1137/23m158125x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 1, Page 668-695, March 2024. <br/> Abstract.We present a geometrical description of the symmetries and reduction of the full gravitational 2-body problem after complete averaging over fast angles. Our variables allow for a well-suited formulation in action-angle type coordinates associated with the averaged angles, which provide geometric insight into the problem. After introducing extra fictitious variables and through a symplectic transformation, we move to a singularity-free quaternionic triple-chart. This choice allows for a global chart to avoid the classical singularities associated with angles and renders all the invariants as homogeneous quadratic polynomials. Additionally, it permits one to quickly write the Hamiltonian of the system in terms of the invariants and the Poisson structure at each stage of the reduction process. In contrast with existing literature, the geometrical approach of this research completely describes all the dynamical aspects of the full reduced space since it involves the relative position of the rotational and orbital angular momenta and their orientation, which has yet to be considered in previous studies. Our program includes a preliminary parametric analysis of relative equilibria and a complete description of the fibers in the reconstruction of the reduced system.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m158125x\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m158125x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
[math]-Reduction, Relative Equilibria, and Bifurcations for the Full Averaged Model of Two Interacting Rigid Bodies
SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 1, Page 668-695, March 2024. Abstract.We present a geometrical description of the symmetries and reduction of the full gravitational 2-body problem after complete averaging over fast angles. Our variables allow for a well-suited formulation in action-angle type coordinates associated with the averaged angles, which provide geometric insight into the problem. After introducing extra fictitious variables and through a symplectic transformation, we move to a singularity-free quaternionic triple-chart. This choice allows for a global chart to avoid the classical singularities associated with angles and renders all the invariants as homogeneous quadratic polynomials. Additionally, it permits one to quickly write the Hamiltonian of the system in terms of the invariants and the Poisson structure at each stage of the reduction process. In contrast with existing literature, the geometrical approach of this research completely describes all the dynamical aspects of the full reduced space since it involves the relative position of the rotational and orbital angular momenta and their orientation, which has yet to be considered in previous studies. Our program includes a preliminary parametric analysis of relative equilibria and a complete description of the fibers in the reconstruction of the reduced system.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.