求助PDF
{"title":"旋转球面模型中具有正能量的狄拉克自旋体散射态","authors":"Zhi-Fu Gao, Ci-Xing Chen, Na Wang, Xin-Jun Zhao, Zhao-Jun Wang","doi":"10.1002/asna.20240012","DOIUrl":null,"url":null,"abstract":"<p>There are many rotating spheroids in the universe, and many astronomers and physicists have used theoretical methods to study the characteristics of stellar gravity since Newton's time. This paper derives the solutions of eight scattering states <math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>ϕ</mi>\n <mrow>\n <mo>(</mo>\n <mn>0</mn>\n <mo>)</mo>\n </mrow>\n </msup>\n <mo>,</mo>\n <msup>\n <mi>χ</mi>\n <mrow>\n <mo>(</mo>\n <mn>0</mn>\n <mo>)</mo>\n </mrow>\n </msup>\n <mo>,</mo>\n <msup>\n <mi>ϕ</mi>\n <mrow>\n <mo>(</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n </msup>\n <mo>,</mo>\n <msup>\n <mi>χ</mi>\n <mrow>\n <mo>(</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n </msup>\n <mo>,</mo>\n <msup>\n <mi>ϕ</mi>\n <mrow>\n <mo>(</mo>\n <mn>2</mn>\n <mo>)</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ \\Big({\\phi}^{(0)},{\\chi}^{(0)},{\\phi}^{(1)},{\\chi}^{(1)},{\\phi}^{(2)} $$</annotation>\n </semantics></math>,<math>\n <semantics>\n <mrow>\n <msup>\n <mi>χ</mi>\n <mrow>\n <mo>(</mo>\n <mn>2</mn>\n <mo>)</mo>\n </mrow>\n </msup>\n <mo>,</mo>\n <msup>\n <mi>ϕ</mi>\n <mrow>\n <mo>(</mo>\n <mn>3</mn>\n <mo>)</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {\\chi}^{(2)},{\\phi}^{(3)} $$</annotation>\n </semantics></math>, and<math>\n <semantics>\n <mrow>\n <msup>\n <mi>χ</mi>\n <mrow>\n <mo>(</mo>\n <mn>3</mn>\n <mo>)</mo>\n </mrow>\n </msup>\n <mo>)</mo>\n </mrow>\n <annotation>$$ {\\chi}^{(3)}\\Big) $$</annotation>\n </semantics></math> for the Dirac equation with positive-energy <math>\n <semantics>\n <mrow>\n <mi>E</mi>\n <mo>=</mo>\n <mi>im</mi>\n </mrow>\n <annotation>$$ E= im $$</annotation>\n </semantics></math>, and establishes the relationship between the differential scattering cross section <math>\n <semantics>\n <mrow>\n <msub>\n <mi>σ</mi>\n <mi>i</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>p</mi>\n <mo>,</mo>\n <mi>θ</mi>\n <mo>,</mo>\n <mi>φ</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$$ {\\sigma}_i\\left(p,\\theta, \\varphi \\right) $$</annotation>\n </semantics></math> and the stellar density <math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n </mrow>\n <annotation>$$ \\mu $$</annotation>\n </semantics></math>. It is found that: (1) For the eight scattering states, their average scattering cross-sections <math>\n <semantics>\n <mrow>\n <mover>\n <msub>\n <mi>σ</mi>\n <mi>i</mi>\n </msub>\n <mo>‾</mo>\n </mover>\n </mrow>\n <annotation>$$ \\overline{\\sigma_i} $$</annotation>\n </semantics></math> are proportional to <math>\n <semantics>\n <mrow>\n <msup>\n <mi>μ</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$$ {\\mu}^2 $$</annotation>\n </semantics></math>, and depend on the star's radius, and the higher the stellar density <math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n </mrow>\n <annotation>$$ \\mu $$</annotation>\n </semantics></math>, the greater the sensitivity of <math>\n <semantics>\n <mrow>\n <mover>\n <mrow>\n <mi>σ</mi>\n <mi>i</mi>\n </mrow>\n <mo>‾</mo>\n </mover>\n </mrow>\n <annotation>$$ \\overline{\\sigma i} $$</annotation>\n </semantics></math> to the change of <math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n </mrow>\n <annotation>$$ \\mu $$</annotation>\n </semantics></math>; (2) For the four scattering states <math>\n <semantics>\n <mrow>\n <msup>\n <mi>χ</mi>\n <mrow>\n <mo>(</mo>\n <mi>i</mi>\n <mo>)</mo>\n </mrow>\n </msup>\n <mo>,</mo>\n <mi>i</mi>\n <mo>=</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>2</mn>\n <mo>,</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$$ {\\chi}^{(i)},i=0,1,2,3 $$</annotation>\n </semantics></math>, their average scattering amplitudes <math>\n <semantics>\n <mrow>\n <mover>\n <mi>f</mi>\n <mo>‾</mo>\n </mover>\n <mrow>\n <mo>(</mo>\n <mi>p</mi>\n <mo>,</mo>\n <mi>θ</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$$ \\overline{f}\\left(p,\\theta \\right) $$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <mover>\n <mi>σ</mi>\n <mo>‾</mo>\n </mover>\n <mrow>\n <mo>(</mo>\n <mi>p</mi>\n <mo>,</mo>\n <mi>θ</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$$ \\overline{\\sigma}\\left(p,\\theta \\right) $$</annotation>\n </semantics></math> depend on the mass <math>\n <semantics>\n <mrow>\n <mi>m</mi>\n </mrow>\n <annotation>$$ m $$</annotation>\n </semantics></math> of the particles; while for the other four scattering states <math>\n <semantics>\n <mrow>\n <msup>\n <mi>ϕ</mi>\n <mrow>\n <mo>(</mo>\n <mi>i</mi>\n <mo>)</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {\\phi}^{(i)} $$</annotation>\n </semantics></math>, <math>\n <semantics>\n <mrow>\n <mi>i</mi>\n <mo>=</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>2</mn>\n <mo>,</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$$ i=0,1,2,3 $$</annotation>\n </semantics></math>, then <math>\n <semantics>\n <mrow>\n <mover>\n <mi>f</mi>\n <mo>‾</mo>\n </mover>\n </mrow>\n <annotation>$$ \\overline{f} $$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <mover>\n <mi>σ</mi>\n <mo>‾</mo>\n </mover>\n </mrow>\n <annotation>$$ \\overline{\\sigma} $$</annotation>\n </semantics></math> are independent of <math>\n <semantics>\n <mrow>\n <mi>m</mi>\n </mrow>\n <annotation>$$ m $$</annotation>\n </semantics></math>. This study links the gravitational characteristics of stars with the scattering cross section, creating a new method for studying the gravitational characteristics, which helps to reveal the mystery of the gravity of rotating ellipsoidal stars.</p>","PeriodicalId":55442,"journal":{"name":"Astronomische Nachrichten","volume":"345 2-3","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dirac spinor scattering states with positive-energy in rotating spheroid models\",\"authors\":\"Zhi-Fu Gao, Ci-Xing Chen, Na Wang, Xin-Jun Zhao, Zhao-Jun Wang\",\"doi\":\"10.1002/asna.20240012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>There are many rotating spheroids in the universe, and many astronomers and physicists have used theoretical methods to study the characteristics of stellar gravity since Newton's time. This paper derives the solutions of eight scattering states <math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>ϕ</mi>\\n <mrow>\\n <mo>(</mo>\\n <mn>0</mn>\\n <mo>)</mo>\\n </mrow>\\n </msup>\\n <mo>,</mo>\\n <msup>\\n <mi>χ</mi>\\n <mrow>\\n <mo>(</mo>\\n <mn>0</mn>\\n <mo>)</mo>\\n </mrow>\\n </msup>\\n <mo>,</mo>\\n <msup>\\n <mi>ϕ</mi>\\n <mrow>\\n <mo>(</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n </msup>\\n <mo>,</mo>\\n <msup>\\n <mi>χ</mi>\\n <mrow>\\n <mo>(</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n </msup>\\n <mo>,</mo>\\n <msup>\\n <mi>ϕ</mi>\\n <mrow>\\n <mo>(</mo>\\n <mn>2</mn>\\n <mo>)</mo>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ \\\\Big({\\\\phi}^{(0)},{\\\\chi}^{(0)},{\\\\phi}^{(1)},{\\\\chi}^{(1)},{\\\\phi}^{(2)} $$</annotation>\\n </semantics></math>,<math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>χ</mi>\\n <mrow>\\n <mo>(</mo>\\n <mn>2</mn>\\n <mo>)</mo>\\n </mrow>\\n </msup>\\n <mo>,</mo>\\n <msup>\\n <mi>ϕ</mi>\\n <mrow>\\n <mo>(</mo>\\n <mn>3</mn>\\n <mo>)</mo>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {\\\\chi}^{(2)},{\\\\phi}^{(3)} $$</annotation>\\n </semantics></math>, and<math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>χ</mi>\\n <mrow>\\n <mo>(</mo>\\n <mn>3</mn>\\n <mo>)</mo>\\n </mrow>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$$ {\\\\chi}^{(3)}\\\\Big) $$</annotation>\\n </semantics></math> for the Dirac equation with positive-energy <math>\\n <semantics>\\n <mrow>\\n <mi>E</mi>\\n <mo>=</mo>\\n <mi>im</mi>\\n </mrow>\\n <annotation>$$ E= im $$</annotation>\\n </semantics></math>, and establishes the relationship between the differential scattering cross section <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>σ</mi>\\n <mi>i</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>p</mi>\\n <mo>,</mo>\\n <mi>θ</mi>\\n <mo>,</mo>\\n <mi>φ</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$$ {\\\\sigma}_i\\\\left(p,\\\\theta, \\\\varphi \\\\right) $$</annotation>\\n </semantics></math> and the stellar density <math>\\n <semantics>\\n <mrow>\\n <mi>μ</mi>\\n </mrow>\\n <annotation>$$ \\\\mu $$</annotation>\\n </semantics></math>. It is found that: (1) For the eight scattering states, their average scattering cross-sections <math>\\n <semantics>\\n <mrow>\\n <mover>\\n <msub>\\n <mi>σ</mi>\\n <mi>i</mi>\\n </msub>\\n <mo>‾</mo>\\n </mover>\\n </mrow>\\n <annotation>$$ \\\\overline{\\\\sigma_i} $$</annotation>\\n </semantics></math> are proportional to <math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>μ</mi>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation>$$ {\\\\mu}^2 $$</annotation>\\n </semantics></math>, and depend on the star's radius, and the higher the stellar density <math>\\n <semantics>\\n <mrow>\\n <mi>μ</mi>\\n </mrow>\\n <annotation>$$ \\\\mu $$</annotation>\\n </semantics></math>, the greater the sensitivity of <math>\\n <semantics>\\n <mrow>\\n <mover>\\n <mrow>\\n <mi>σ</mi>\\n <mi>i</mi>\\n </mrow>\\n <mo>‾</mo>\\n </mover>\\n </mrow>\\n <annotation>$$ \\\\overline{\\\\sigma i} $$</annotation>\\n </semantics></math> to the change of <math>\\n <semantics>\\n <mrow>\\n <mi>μ</mi>\\n </mrow>\\n <annotation>$$ \\\\mu $$</annotation>\\n </semantics></math>; (2) For the four scattering states <math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>χ</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>i</mi>\\n <mo>)</mo>\\n </mrow>\\n </msup>\\n <mo>,</mo>\\n <mi>i</mi>\\n <mo>=</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mn>2</mn>\\n <mo>,</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation>$$ {\\\\chi}^{(i)},i=0,1,2,3 $$</annotation>\\n </semantics></math>, their average scattering amplitudes <math>\\n <semantics>\\n <mrow>\\n <mover>\\n <mi>f</mi>\\n <mo>‾</mo>\\n </mover>\\n <mrow>\\n <mo>(</mo>\\n <mi>p</mi>\\n <mo>,</mo>\\n <mi>θ</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$$ \\\\overline{f}\\\\left(p,\\\\theta \\\\right) $$</annotation>\\n </semantics></math> and <math>\\n <semantics>\\n <mrow>\\n <mover>\\n <mi>σ</mi>\\n <mo>‾</mo>\\n </mover>\\n <mrow>\\n <mo>(</mo>\\n <mi>p</mi>\\n <mo>,</mo>\\n <mi>θ</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$$ \\\\overline{\\\\sigma}\\\\left(p,\\\\theta \\\\right) $$</annotation>\\n </semantics></math> depend on the mass <math>\\n <semantics>\\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n <annotation>$$ m $$</annotation>\\n </semantics></math> of the particles; while for the other four scattering states <math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>ϕ</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>i</mi>\\n <mo>)</mo>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {\\\\phi}^{(i)} $$</annotation>\\n </semantics></math>, <math>\\n <semantics>\\n <mrow>\\n <mi>i</mi>\\n <mo>=</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mn>2</mn>\\n <mo>,</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation>$$ i=0,1,2,3 $$</annotation>\\n </semantics></math>, then <math>\\n <semantics>\\n <mrow>\\n <mover>\\n <mi>f</mi>\\n <mo>‾</mo>\\n </mover>\\n </mrow>\\n <annotation>$$ \\\\overline{f} $$</annotation>\\n </semantics></math> and <math>\\n <semantics>\\n <mrow>\\n <mover>\\n <mi>σ</mi>\\n <mo>‾</mo>\\n </mover>\\n </mrow>\\n <annotation>$$ \\\\overline{\\\\sigma} $$</annotation>\\n </semantics></math> are independent of <math>\\n <semantics>\\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n <annotation>$$ m $$</annotation>\\n </semantics></math>. This study links the gravitational characteristics of stars with the scattering cross section, creating a new method for studying the gravitational characteristics, which helps to reveal the mystery of the gravity of rotating ellipsoidal stars.</p>\",\"PeriodicalId\":55442,\"journal\":{\"name\":\"Astronomische Nachrichten\",\"volume\":\"345 2-3\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astronomische Nachrichten\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/asna.20240012\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomische Nachrichten","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asna.20240012","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用
摘要
宇宙中有许多旋转球体,自牛顿时代以来,许多天文学家和物理学家都用理论方法来研究恒星引力的特性。本文推导了八种散射态(ϕ(0),χ(0),ϕ(1),χ(1),ϕ(2)$$ \Big({\phi}^{(0)}、{\chi}^{(0)},{\phi}^{(1)},{\chi}^{(1)},{\phi}^{(2)} $$,χ(2),ϕ(3)$$ {\chi}^{(2)},{\phi}^{(3)} $$,andχ(3))$$ {\chi}^{(3)}\Big) $$ 为正能量 E=im$$ E= im $$ 的狄拉克方程,并建立了微分散射截面 σi(p,θ,φ)$$ {\sigma}_i\left(p,\theta, \varphi \right) $$ 与恒星密度 μ$$ \mu $$ 之间的关系。结果发现(1) 对于八种散射态,它们的平均散射截面 σi‾$$ \overline\{sigma_i} $$ 与 μ$$ {\mu}^2 $$ 成正比、恒星密度 μ$$ \mu $$ 越高,σi‾$$ \overline{sigma i} $$ 对 μ$$ \mu $$ 变化的敏感性就越大;(2) 对于四个散射态 χ(i),i=0,1,2,3$$ {\chi}^{(i)},i=0,1,2,3 $$,其平均散射振幅 f‾(p、θ)$$ \overline{f}\left(p,\theta \right) $$ 和 σ‾(p,θ)$$ \overline{sigma}\left(p,\theta \right) $$ 取决于粒子的质量 m$$ m$ ;而对于其他四种散射态 j(i)$$ {\phi}^{(i)} $$, i=0,1,2,3$$ i=0,1,2,3 $$, 则 f‾$ \overline{f} $$ 和 σ‾$ \overline{sigma} $$ 与 m$$ m$ 无关。该研究将恒星的引力特性与散射截面联系起来,创建了一种研究引力特性的新方法,有助于揭示旋转椭球体恒星引力的奥秘。
本文章由计算机程序翻译,如有差异,请以英文原文为准。