利用带动态核的神经过程重建声场

IF 1.7 3区 计算机科学 Q2 ACOUSTICS Eurasip Journal on Audio Speech and Music Processing Pub Date : 2024-02-20 DOI:10.1186/s13636-024-00333-x
Zining Liang, Wen Zhang, Thushara D. Abhayapala
{"title":"利用带动态核的神经过程重建声场","authors":"Zining Liang, Wen Zhang, Thushara D. Abhayapala","doi":"10.1186/s13636-024-00333-x","DOIUrl":null,"url":null,"abstract":"Accurately representing the sound field with high spatial resolution is crucial for immersive and interactive sound field reproduction technology. In recent studies, there has been a notable emphasis on efficiently estimating sound fields from a limited number of discrete observations. In particular, kernel-based methods using Gaussian processes (GPs) with a covariance function to model spatial correlations have been proposed. However, the current methods rely on pre-defined kernels for modeling, requiring the manual identification of optimal kernels and their parameters for different sound fields. In this work, we propose a novel approach that parameterizes GPs using a deep neural network based on neural processes (NPs) to reconstruct the magnitude of the sound field. This method has the advantage of dynamically learning kernels from data using an attention mechanism, allowing for greater flexibility and adaptability to the acoustic properties of the sound field. Numerical experiments demonstrate that our proposed approach outperforms current methods in reconstructing accuracy, providing a promising alternative for sound field reconstruction.","PeriodicalId":49202,"journal":{"name":"Eurasip Journal on Audio Speech and Music Processing","volume":"32 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sound field reconstruction using neural processes with dynamic kernels\",\"authors\":\"Zining Liang, Wen Zhang, Thushara D. Abhayapala\",\"doi\":\"10.1186/s13636-024-00333-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurately representing the sound field with high spatial resolution is crucial for immersive and interactive sound field reproduction technology. In recent studies, there has been a notable emphasis on efficiently estimating sound fields from a limited number of discrete observations. In particular, kernel-based methods using Gaussian processes (GPs) with a covariance function to model spatial correlations have been proposed. However, the current methods rely on pre-defined kernels for modeling, requiring the manual identification of optimal kernels and their parameters for different sound fields. In this work, we propose a novel approach that parameterizes GPs using a deep neural network based on neural processes (NPs) to reconstruct the magnitude of the sound field. This method has the advantage of dynamically learning kernels from data using an attention mechanism, allowing for greater flexibility and adaptability to the acoustic properties of the sound field. Numerical experiments demonstrate that our proposed approach outperforms current methods in reconstructing accuracy, providing a promising alternative for sound field reconstruction.\",\"PeriodicalId\":49202,\"journal\":{\"name\":\"Eurasip Journal on Audio Speech and Music Processing\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurasip Journal on Audio Speech and Music Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1186/s13636-024-00333-x\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasip Journal on Audio Speech and Music Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s13636-024-00333-x","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

以高空间分辨率准确呈现声场对于身临其境和交互式声场再现技术至关重要。在最近的研究中,从有限的离散观测数据中有效估计声场受到了广泛重视。特别是,有人提出了基于核的方法,使用具有协方差函数的高斯过程(GPs)来模拟空间相关性。然而,目前的方法依赖于预定义的核进行建模,需要针对不同声场手动确定最佳核及其参数。在这项工作中,我们提出了一种新方法,利用基于神经过程(NPs)的深度神经网络对 GPs 进行参数化,以重建声场的幅度。这种方法的优点是利用注意力机制从数据中动态学习内核,从而具有更大的灵活性和对声场声学特性的适应性。数值实验证明,我们提出的方法在重建准确性方面优于现有方法,为声场重建提供了一种有前途的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sound field reconstruction using neural processes with dynamic kernels
Accurately representing the sound field with high spatial resolution is crucial for immersive and interactive sound field reproduction technology. In recent studies, there has been a notable emphasis on efficiently estimating sound fields from a limited number of discrete observations. In particular, kernel-based methods using Gaussian processes (GPs) with a covariance function to model spatial correlations have been proposed. However, the current methods rely on pre-defined kernels for modeling, requiring the manual identification of optimal kernels and their parameters for different sound fields. In this work, we propose a novel approach that parameterizes GPs using a deep neural network based on neural processes (NPs) to reconstruct the magnitude of the sound field. This method has the advantage of dynamically learning kernels from data using an attention mechanism, allowing for greater flexibility and adaptability to the acoustic properties of the sound field. Numerical experiments demonstrate that our proposed approach outperforms current methods in reconstructing accuracy, providing a promising alternative for sound field reconstruction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Eurasip Journal on Audio Speech and Music Processing
Eurasip Journal on Audio Speech and Music Processing ACOUSTICS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
4.10
自引率
4.20%
发文量
0
审稿时长
12 months
期刊介绍: The aim of “EURASIP Journal on Audio, Speech, and Music Processing” is to bring together researchers, scientists and engineers working on the theory and applications of the processing of various audio signals, with a specific focus on speech and music. EURASIP Journal on Audio, Speech, and Music Processing will be an interdisciplinary journal for the dissemination of all basic and applied aspects of speech communication and audio processes.
期刊最新文献
Compression of room impulse responses for compact storage and fast low-latency convolution Guest editorial: AI for computational audition—sound and music processing Physics-constrained adaptive kernel interpolation for region-to-region acoustic transfer function: a Bayesian approach Physics-informed neural network for volumetric sound field reconstruction of speech signals Optimal sensor placement for the spatial reconstruction of sound fields
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1