利用 CentileBrain 对整个生命周期的大脑形态进行规范建模:算法基准和模型优化

IF 23.8 1区 医学 Q1 MEDICAL INFORMATICS Lancet Digital Health Pub Date : 2024-02-21 DOI:10.1016/S2589-7500(23)00250-9
Ruiyang Ge PhD , Yuetong Yu BSc , Yi Xuan Qi BSc , Yu-nan Fan BSc , Shiyu Chen BSc , Chuntong Gao BSc , Shalaila S Haas PhD , Faye New MA , Prof Dorret I Boomsma PhD , Prof Henry Brodaty DSc , Rachel M Brouwer PhD , Prof Randy Buckner PhD , Xavier Caseras PhD , Fabrice Crivello PhD , Prof Eveline A Crone PhD , Prof Susanne Erk MD , Prof Simon E Fisher Dphil , Prof Barbara Franke PhD , Prof David C Glahn PhD , Prof Udo Dannlowski MD , Kevin Yu
{"title":"利用 CentileBrain 对整个生命周期的大脑形态进行规范建模:算法基准和模型优化","authors":"Ruiyang Ge PhD ,&nbsp;Yuetong Yu BSc ,&nbsp;Yi Xuan Qi BSc ,&nbsp;Yu-nan Fan BSc ,&nbsp;Shiyu Chen BSc ,&nbsp;Chuntong Gao BSc ,&nbsp;Shalaila S Haas PhD ,&nbsp;Faye New MA ,&nbsp;Prof Dorret I Boomsma PhD ,&nbsp;Prof Henry Brodaty DSc ,&nbsp;Rachel M Brouwer PhD ,&nbsp;Prof Randy Buckner PhD ,&nbsp;Xavier Caseras PhD ,&nbsp;Fabrice Crivello PhD ,&nbsp;Prof Eveline A Crone PhD ,&nbsp;Prof Susanne Erk MD ,&nbsp;Prof Simon E Fisher Dphil ,&nbsp;Prof Barbara Franke PhD ,&nbsp;Prof David C Glahn PhD ,&nbsp;Prof Udo Dannlowski MD ,&nbsp;Kevin Yu","doi":"10.1016/S2589-7500(23)00250-9","DOIUrl":null,"url":null,"abstract":"<div><p>The value of normative models in research and clinical practice relies on their robustness and a systematic comparison of different modelling algorithms and parameters; however, this has not been done to date. We aimed to identify the optimal approach for normative modelling of brain morphometric data through systematic empirical benchmarking, by quantifying the accuracy of different algorithms and identifying parameters that optimised model performance. We developed this framework with regional morphometric data from 37 407 healthy individuals (53% female and 47% male; aged 3–90 years) from 87 datasets from Europe, Australia, the USA, South Africa, and east Asia following a comparative evaluation of eight algorithms and multiple covariate combinations pertaining to image acquisition and quality, parcellation software versions, global neuroimaging measures, and longitudinal stability. The multivariate fractional polynomial regression (MFPR) emerged as the preferred algorithm, optimised with non-linear polynomials for age and linear effects of global measures as covariates. The MFPR models showed excellent accuracy across the lifespan and within distinct age-bins and longitudinal stability over a 2-year period. The performance of all MFPR models plateaued at sample sizes exceeding 3000 study participants. This model can inform about the biological and behavioural implications of deviations from typical age-related neuroanatomical changes and support future study designs. The model and scripts described here are freely available through <span>CentileBrain</span><svg><path></path></svg>.</p></div>","PeriodicalId":48534,"journal":{"name":"Lancet Digital Health","volume":null,"pages":null},"PeriodicalIF":23.8000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589750023002509/pdfft?md5=cb176af4fc6356ebca14f1a13d8d4880&pid=1-s2.0-S2589750023002509-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Normative modelling of brain morphometry across the lifespan with CentileBrain: algorithm benchmarking and model optimisation\",\"authors\":\"Ruiyang Ge PhD ,&nbsp;Yuetong Yu BSc ,&nbsp;Yi Xuan Qi BSc ,&nbsp;Yu-nan Fan BSc ,&nbsp;Shiyu Chen BSc ,&nbsp;Chuntong Gao BSc ,&nbsp;Shalaila S Haas PhD ,&nbsp;Faye New MA ,&nbsp;Prof Dorret I Boomsma PhD ,&nbsp;Prof Henry Brodaty DSc ,&nbsp;Rachel M Brouwer PhD ,&nbsp;Prof Randy Buckner PhD ,&nbsp;Xavier Caseras PhD ,&nbsp;Fabrice Crivello PhD ,&nbsp;Prof Eveline A Crone PhD ,&nbsp;Prof Susanne Erk MD ,&nbsp;Prof Simon E Fisher Dphil ,&nbsp;Prof Barbara Franke PhD ,&nbsp;Prof David C Glahn PhD ,&nbsp;Prof Udo Dannlowski MD ,&nbsp;Kevin Yu\",\"doi\":\"10.1016/S2589-7500(23)00250-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The value of normative models in research and clinical practice relies on their robustness and a systematic comparison of different modelling algorithms and parameters; however, this has not been done to date. We aimed to identify the optimal approach for normative modelling of brain morphometric data through systematic empirical benchmarking, by quantifying the accuracy of different algorithms and identifying parameters that optimised model performance. We developed this framework with regional morphometric data from 37 407 healthy individuals (53% female and 47% male; aged 3–90 years) from 87 datasets from Europe, Australia, the USA, South Africa, and east Asia following a comparative evaluation of eight algorithms and multiple covariate combinations pertaining to image acquisition and quality, parcellation software versions, global neuroimaging measures, and longitudinal stability. The multivariate fractional polynomial regression (MFPR) emerged as the preferred algorithm, optimised with non-linear polynomials for age and linear effects of global measures as covariates. The MFPR models showed excellent accuracy across the lifespan and within distinct age-bins and longitudinal stability over a 2-year period. The performance of all MFPR models plateaued at sample sizes exceeding 3000 study participants. This model can inform about the biological and behavioural implications of deviations from typical age-related neuroanatomical changes and support future study designs. The model and scripts described here are freely available through <span>CentileBrain</span><svg><path></path></svg>.</p></div>\",\"PeriodicalId\":48534,\"journal\":{\"name\":\"Lancet Digital Health\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":23.8000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2589750023002509/pdfft?md5=cb176af4fc6356ebca14f1a13d8d4880&pid=1-s2.0-S2589750023002509-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lancet Digital Health\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589750023002509\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICAL INFORMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lancet Digital Health","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589750023002509","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0

摘要

标准模型在研究和临床实践中的价值取决于其稳健性以及对不同建模算法和参数的系统性比较;然而,迄今为止还没有进行过这种比较。我们的目标是通过量化不同算法的准确性和确定优化模型性能的参数,以系统性的经验基准确定大脑形态计量数据规范建模的最佳方法。我们利用来自欧洲、澳大利亚、美国、南非和东亚 87 个数据集的 37 407 名健康人(53% 为女性,47% 为男性,年龄在 3-90 岁之间)的区域形态计量数据开发了这一框架,并对八种算法和多个协变量组合进行了比较评估,这些协变量组合涉及图像采集和质量、解析软件版本、全局神经影像测量和纵向稳定性。多变量分数多项式回归(MFPR)成为首选算法,该算法以年龄的非线性多项式和全局测量的线性效应作为协变量进行优化。在整个生命周期和不同年龄段内,MFPR 模型都表现出极佳的准确性,并且在两年的时间内具有纵向稳定性。当样本量超过 3000 人时,所有 MFPR 模型的性能都趋于稳定。该模型可为偏离典型年龄相关神经解剖变化的生物学和行为学影响提供信息,并为未来的研究设计提供支持。本文所描述的模型和脚本可通过 CentileBrain 免费获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Normative modelling of brain morphometry across the lifespan with CentileBrain: algorithm benchmarking and model optimisation

The value of normative models in research and clinical practice relies on their robustness and a systematic comparison of different modelling algorithms and parameters; however, this has not been done to date. We aimed to identify the optimal approach for normative modelling of brain morphometric data through systematic empirical benchmarking, by quantifying the accuracy of different algorithms and identifying parameters that optimised model performance. We developed this framework with regional morphometric data from 37 407 healthy individuals (53% female and 47% male; aged 3–90 years) from 87 datasets from Europe, Australia, the USA, South Africa, and east Asia following a comparative evaluation of eight algorithms and multiple covariate combinations pertaining to image acquisition and quality, parcellation software versions, global neuroimaging measures, and longitudinal stability. The multivariate fractional polynomial regression (MFPR) emerged as the preferred algorithm, optimised with non-linear polynomials for age and linear effects of global measures as covariates. The MFPR models showed excellent accuracy across the lifespan and within distinct age-bins and longitudinal stability over a 2-year period. The performance of all MFPR models plateaued at sample sizes exceeding 3000 study participants. This model can inform about the biological and behavioural implications of deviations from typical age-related neuroanatomical changes and support future study designs. The model and scripts described here are freely available through CentileBrain.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
41.20
自引率
1.60%
发文量
232
审稿时长
13 weeks
期刊介绍: The Lancet Digital Health publishes important, innovative, and practice-changing research on any topic connected with digital technology in clinical medicine, public health, and global health. The journal’s open access content crosses subject boundaries, building bridges between health professionals and researchers.By bringing together the most important advances in this multidisciplinary field,The Lancet Digital Health is the most prominent publishing venue in digital health. We publish a range of content types including Articles,Review, Comment, and Correspondence, contributing to promoting digital technologies in health practice worldwide.
期刊最新文献
Artificial intelligence-enabled electrocardiogram for mortality and cardiovascular risk estimation: a model development and validation study COVID-19 testing and reporting behaviours in England across different sociodemographic groups: a population-based study using testing data and data from community prevalence surveillance surveys Fairly evaluating the performance of normative models – Authors' reply Fairly evaluating the performance of normative models Lifting the veil on health datasets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1