通过 Dectin-1 进行自我识别会加剧肝脏炎症。

IF 1.3 4区 生物学 Q4 CELL BIOLOGY Genes to Cells Pub Date : 2024-02-22 DOI:10.1111/gtc.13106
Shota Torigoe, Douglas W. Lowman, Toshihiko Sugiki, David L. Williams, Sho Yamasaki
{"title":"通过 Dectin-1 进行自我识别会加剧肝脏炎症。","authors":"Shota Torigoe,&nbsp;Douglas W. Lowman,&nbsp;Toshihiko Sugiki,&nbsp;David L. Williams,&nbsp;Sho Yamasaki","doi":"10.1111/gtc.13106","DOIUrl":null,"url":null,"abstract":"<p>Dectin-1 is a well-characterized C-type lectin receptor involved in anti-fungal immunity through the recognition of polysaccharides; however, molecular mechanisms and outcomes initiated through self-recognition have not been fully understood. Here, we purified a water-soluble fraction from mouse liver that acts as a Dectin-1 agonist. To address the physiological relevance of this recognition, we utilized sterile liver inflammation models. The CCl<sub>4</sub>-induced hepatitis model showed that Dectin-1 deficiency led to reduced inflammation through decreased inflammatory cell infiltration and lower pro-inflammatory cytokine levels. Moreover, in a NASH model induced by streptozotocin and a high-fat diet, hepatic inflammation and fibrosis were ameliorated in Dectin-1-deficient mice. The Dectin-1 agonist activity was increased in the water-soluble fraction from NASH mice, suggesting a potential pathogenic cycle between Dectin-1 activation and hepatitis progression. In vivo administration of the fraction into mice induced hepatic inflammation. These results highlight a role of self-recognition through Dectin-1 that triggers hepatic innate immune responses and contributes to the exacerbation of inflammation in pathogenic settings. Thus, the blockade of this axis may provide a therapeutic option for liver inflammatory diseases.</p>","PeriodicalId":12742,"journal":{"name":"Genes to Cells","volume":"29 4","pages":"316-327"},"PeriodicalIF":1.3000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-recognition through Dectin-1 exacerbates liver inflammation\",\"authors\":\"Shota Torigoe,&nbsp;Douglas W. Lowman,&nbsp;Toshihiko Sugiki,&nbsp;David L. Williams,&nbsp;Sho Yamasaki\",\"doi\":\"10.1111/gtc.13106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Dectin-1 is a well-characterized C-type lectin receptor involved in anti-fungal immunity through the recognition of polysaccharides; however, molecular mechanisms and outcomes initiated through self-recognition have not been fully understood. Here, we purified a water-soluble fraction from mouse liver that acts as a Dectin-1 agonist. To address the physiological relevance of this recognition, we utilized sterile liver inflammation models. The CCl<sub>4</sub>-induced hepatitis model showed that Dectin-1 deficiency led to reduced inflammation through decreased inflammatory cell infiltration and lower pro-inflammatory cytokine levels. Moreover, in a NASH model induced by streptozotocin and a high-fat diet, hepatic inflammation and fibrosis were ameliorated in Dectin-1-deficient mice. The Dectin-1 agonist activity was increased in the water-soluble fraction from NASH mice, suggesting a potential pathogenic cycle between Dectin-1 activation and hepatitis progression. In vivo administration of the fraction into mice induced hepatic inflammation. These results highlight a role of self-recognition through Dectin-1 that triggers hepatic innate immune responses and contributes to the exacerbation of inflammation in pathogenic settings. Thus, the blockade of this axis may provide a therapeutic option for liver inflammatory diseases.</p>\",\"PeriodicalId\":12742,\"journal\":{\"name\":\"Genes to Cells\",\"volume\":\"29 4\",\"pages\":\"316-327\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genes to Cells\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gtc.13106\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes to Cells","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gtc.13106","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

Dectin-1 是一种特征明确的 C 型凝集素受体,通过识别多糖参与抗真菌免疫;然而,通过自我识别启动的分子机制和结果尚未完全清楚。在这里,我们从小鼠肝脏中纯化出了一种可作为 Dectin-1 激动剂的水溶性成分。为了研究这种识别的生理相关性,我们利用了无菌肝脏炎症模型。四氯化碳诱导的肝炎模型显示,Dectin-1的缺乏可通过减少炎症细胞浸润和降低促炎症细胞因子水平来减轻炎症。此外,在链脲佐菌素和高脂饮食诱导的 NASH 模型中,肝脏炎症和纤维化在 Dectin-1 缺乏的小鼠中得到了改善。NASH小鼠水溶性馏分中的Dectin-1激动剂活性增加,表明Dectin-1激活与肝炎进展之间存在潜在的致病循环。给小鼠体内注射该馏分可诱发肝脏炎症。这些结果突显了通过 Dectin-1 触发肝脏先天性免疫反应并在致病环境中加剧炎症的自我识别作用。因此,阻断这一轴心可为肝脏炎症性疾病提供一种治疗选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Self-recognition through Dectin-1 exacerbates liver inflammation

Dectin-1 is a well-characterized C-type lectin receptor involved in anti-fungal immunity through the recognition of polysaccharides; however, molecular mechanisms and outcomes initiated through self-recognition have not been fully understood. Here, we purified a water-soluble fraction from mouse liver that acts as a Dectin-1 agonist. To address the physiological relevance of this recognition, we utilized sterile liver inflammation models. The CCl4-induced hepatitis model showed that Dectin-1 deficiency led to reduced inflammation through decreased inflammatory cell infiltration and lower pro-inflammatory cytokine levels. Moreover, in a NASH model induced by streptozotocin and a high-fat diet, hepatic inflammation and fibrosis were ameliorated in Dectin-1-deficient mice. The Dectin-1 agonist activity was increased in the water-soluble fraction from NASH mice, suggesting a potential pathogenic cycle between Dectin-1 activation and hepatitis progression. In vivo administration of the fraction into mice induced hepatic inflammation. These results highlight a role of self-recognition through Dectin-1 that triggers hepatic innate immune responses and contributes to the exacerbation of inflammation in pathogenic settings. Thus, the blockade of this axis may provide a therapeutic option for liver inflammatory diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genes to Cells
Genes to Cells 生物-细胞生物学
CiteScore
3.40
自引率
0.00%
发文量
71
审稿时长
3 months
期刊介绍: Genes to Cells provides an international forum for the publication of papers describing important aspects of molecular and cellular biology. The journal aims to present papers that provide conceptual advance in the relevant field. Particular emphasis will be placed on work aimed at understanding the basic mechanisms underlying biological events.
期刊最新文献
The HAT Inhibitor ISOX-DUAL Diminishes Ischemic Areas in a Mouse Model of Oxygen-Induced Retinopathy The Protein Kinase aPKC as Well as the Small GTPases RhoA and Cdc42 Regulates Neutrophil Chemotaxis Partly by Recruiting the ROCK Kinase to the Leading Edge Issue Information Transcriptomic Regulation by Astrocytic m6A Methylation in the mPFC Vacuolar Sts1 Degradation-Induced Cytoplasmic Proteasome Translocation Restores Cell Proliferation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1