Christine Hum, Usama Tahir, Shirley H J Mei, Josee Champagne, Dean A Fergusson, Manoj Lalu, Duncan J Stewart, Keith Walley, John Marshall, Claudia C Dos Santos, Brent W Winston, Asher A Mendelson, Chintan Dave, Lauralyn McIntyre
{"title":"脐带间充质干细胞疗法在败血症临床前模型中的有效性和安全性:系统综述与元分析》。","authors":"Christine Hum, Usama Tahir, Shirley H J Mei, Josee Champagne, Dean A Fergusson, Manoj Lalu, Duncan J Stewart, Keith Walley, John Marshall, Claudia C Dos Santos, Brent W Winston, Asher A Mendelson, Chintan Dave, Lauralyn McIntyre","doi":"10.1093/stcltm/szae003","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In preclinical studies, mesenchymal stromal cells (MSCs), including umbilical cord-derived MSCs (UC-MSCs), demonstrate the ability to modulate numerous pathophysiological processes related to sepsis; however, a systematic synthesis of the literature is needed to assess the efficacy of UC-MSCs for treating sepsis.</p><p><strong>Objective: </strong>To examine the effects of UC-MSCs on overall mortality (primary outcome) as well as on organ dysfunction, coagulopathy, endothelial permeability, pathogen clearance, and systemic inflammation (secondary outcomes) at prespecified time intervals in preclinical models of sepsis.</p><p><strong>Methods: </strong>A systematic search was conducted on Embase, Ovid MEDLINE, and Web of Science up to June 20, 2023. Preclinical controlled studies using in vivo sepsis models with systemic UC-MSC administration were included. Meta-analyses were conducted and expressed as odds ratios (OR) and ratios of the weighted means with 95% CI for categorical and continuous data, respectively. Risk of bias was assessed with the SYRCLE tool.</p><p><strong>Results: </strong>Twenty-six studies (34 experiments, n = 1258 animals) were included in this review. Overall mortality was significantly reduced with UC-MSC treatment as compared to controls (OR: 0.26, 95% CI: 0.18-0.36). At various prespecified time intervals, UC-MSCs reduced surrogate measures of organ dysfunction related to the kidney, liver, and lung; reduced coagulopathy and endothelial permeability; and enhanced pathogen clearance from multiple sites. UC-MSCs also modulated systemic inflammatory mediators. No studies were rated as low risk across all SYCLE domains.</p><p><strong>Conclusions: </strong>These results demonstrate the efficacy of UC-MSC treatment in preclinical sepsis models and highlight their potential as a therapeutic intervention for septic shock.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"346-361"},"PeriodicalIF":5.4000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11016835/pdf/","citationCount":"0","resultStr":"{\"title\":\"Efficacy and Safety of Umbilical Cord-Derived Mesenchymal Stromal Cell Therapy in Preclinical Models of Sepsis: A Systematic Review and Meta-analysis.\",\"authors\":\"Christine Hum, Usama Tahir, Shirley H J Mei, Josee Champagne, Dean A Fergusson, Manoj Lalu, Duncan J Stewart, Keith Walley, John Marshall, Claudia C Dos Santos, Brent W Winston, Asher A Mendelson, Chintan Dave, Lauralyn McIntyre\",\"doi\":\"10.1093/stcltm/szae003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>In preclinical studies, mesenchymal stromal cells (MSCs), including umbilical cord-derived MSCs (UC-MSCs), demonstrate the ability to modulate numerous pathophysiological processes related to sepsis; however, a systematic synthesis of the literature is needed to assess the efficacy of UC-MSCs for treating sepsis.</p><p><strong>Objective: </strong>To examine the effects of UC-MSCs on overall mortality (primary outcome) as well as on organ dysfunction, coagulopathy, endothelial permeability, pathogen clearance, and systemic inflammation (secondary outcomes) at prespecified time intervals in preclinical models of sepsis.</p><p><strong>Methods: </strong>A systematic search was conducted on Embase, Ovid MEDLINE, and Web of Science up to June 20, 2023. Preclinical controlled studies using in vivo sepsis models with systemic UC-MSC administration were included. Meta-analyses were conducted and expressed as odds ratios (OR) and ratios of the weighted means with 95% CI for categorical and continuous data, respectively. Risk of bias was assessed with the SYRCLE tool.</p><p><strong>Results: </strong>Twenty-six studies (34 experiments, n = 1258 animals) were included in this review. Overall mortality was significantly reduced with UC-MSC treatment as compared to controls (OR: 0.26, 95% CI: 0.18-0.36). At various prespecified time intervals, UC-MSCs reduced surrogate measures of organ dysfunction related to the kidney, liver, and lung; reduced coagulopathy and endothelial permeability; and enhanced pathogen clearance from multiple sites. UC-MSCs also modulated systemic inflammatory mediators. No studies were rated as low risk across all SYCLE domains.</p><p><strong>Conclusions: </strong>These results demonstrate the efficacy of UC-MSC treatment in preclinical sepsis models and highlight their potential as a therapeutic intervention for septic shock.</p>\",\"PeriodicalId\":21986,\"journal\":{\"name\":\"Stem Cells Translational Medicine\",\"volume\":\" \",\"pages\":\"346-361\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11016835/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem Cells Translational Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/stcltm/szae003\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cells Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/stcltm/szae003","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
摘要
背景:在临床前研究中,间充质基质细胞(MSCs),包括脐带间充质干细胞(UC-MSCs),显示出调节与脓毒症有关的多种病理生理过程的能力;然而,需要对文献进行系统的综合,以评估UC-MSCs治疗脓毒症的疗效:目的:在脓毒症临床前模型中,研究 UC-间充质干细胞在预设时间间隔内对总死亡率(主要结果)以及器官功能障碍、凝血病变、内皮通透性、病原体清除和全身炎症(次要结果)的影响:截至 2023 年 6 月 20 日,在 Embase、Ovid MEDLINE 和 Web of Science 上进行了系统检索。方法:在 Embase、Ovid MEDLINE 和 Web Science 上进行了系统性搜索,搜索时间截至 2023 年 6 月。对分类数据和连续数据进行了元分析,并分别以几率比(OR)和加权平均值之比及 95% CI 表示。用SYRCLE工具评估了偏倚风险:本综述共纳入 26 项研究(34 项实验,n = 1258 只动物)。与对照组相比,UC-间充质干细胞治疗可显著降低总死亡率(OR:0.26,95% CI:0.18-0.36)。在不同的预设时间间隔内,UC-间充质干细胞降低了与肾、肝和肺有关的器官功能障碍替代指标;减少了凝血病变和内皮通透性;并增强了多个部位的病原体清除能力。UC 间充质干细胞还能调节全身炎症介质。没有研究在所有 SYCLE 领域被评为低风险:这些结果证明了 UC 间充质干细胞治疗临床前脓毒症模型的疗效,并凸显了其作为脓毒性休克治疗干预措施的潜力。
Efficacy and Safety of Umbilical Cord-Derived Mesenchymal Stromal Cell Therapy in Preclinical Models of Sepsis: A Systematic Review and Meta-analysis.
Background: In preclinical studies, mesenchymal stromal cells (MSCs), including umbilical cord-derived MSCs (UC-MSCs), demonstrate the ability to modulate numerous pathophysiological processes related to sepsis; however, a systematic synthesis of the literature is needed to assess the efficacy of UC-MSCs for treating sepsis.
Objective: To examine the effects of UC-MSCs on overall mortality (primary outcome) as well as on organ dysfunction, coagulopathy, endothelial permeability, pathogen clearance, and systemic inflammation (secondary outcomes) at prespecified time intervals in preclinical models of sepsis.
Methods: A systematic search was conducted on Embase, Ovid MEDLINE, and Web of Science up to June 20, 2023. Preclinical controlled studies using in vivo sepsis models with systemic UC-MSC administration were included. Meta-analyses were conducted and expressed as odds ratios (OR) and ratios of the weighted means with 95% CI for categorical and continuous data, respectively. Risk of bias was assessed with the SYRCLE tool.
Results: Twenty-six studies (34 experiments, n = 1258 animals) were included in this review. Overall mortality was significantly reduced with UC-MSC treatment as compared to controls (OR: 0.26, 95% CI: 0.18-0.36). At various prespecified time intervals, UC-MSCs reduced surrogate measures of organ dysfunction related to the kidney, liver, and lung; reduced coagulopathy and endothelial permeability; and enhanced pathogen clearance from multiple sites. UC-MSCs also modulated systemic inflammatory mediators. No studies were rated as low risk across all SYCLE domains.
Conclusions: These results demonstrate the efficacy of UC-MSC treatment in preclinical sepsis models and highlight their potential as a therapeutic intervention for septic shock.
期刊介绍:
STEM CELLS Translational Medicine is a monthly, peer-reviewed, largely online, open access journal.
STEM CELLS Translational Medicine works to advance the utilization of cells for clinical therapy. By bridging stem cell molecular and biological research and helping speed translations of emerging lab discoveries into clinical trials, STEM CELLS Translational Medicine will help move applications of these critical investigations closer to accepted best patient practices and ultimately improve outcomes.
The journal encourages original research articles and concise reviews describing laboratory investigations of stem cells, including their characterization and manipulation, and the translation of their clinical aspects of from the bench to patient care. STEM CELLS Translational Medicine covers all aspects of translational cell studies, including bench research, first-in-human case studies, and relevant clinical trials.