{"title":"通过基于潜能的风格翻译进行结构磁共振成像协调。","authors":"Mengqi Wu, Lintao Zhang, Pew-Thian Yap, Weili Lin, Hongtu Zhu, Mingxia Liu","doi":"10.1007/978-3-031-45673-2_1","DOIUrl":null,"url":null,"abstract":"<p><p>Multi-site brain magnetic resonance imaging (MRI) has been widely used in clinical and research domains, but usually is sensitive to non-biological variations caused by site effects (<i>e.g.</i>, field strengths and scanning protocols). Several retrospective data harmonization methods have shown promising results in removing these non-biological variations at feature or whole-image level. Most existing image-level harmonization methods are implemented through generative adversarial networks, which are generally computationally expensive and generalize poorly on independent data. To this end, this paper proposes a disentangled latent energy-based style translation (DLEST) framework for image-level structural MRI harmonization. Specifically, DLEST disentangles <i>site-invariant image generation</i> and <i>site-specific style translation</i> via a latent autoencoder and an energy-based model. The autoencoder learns to encode images into low-dimensional latent space, and generates faithful images from latent codes. The energy-based model is placed in between the encoding and generation steps, facilitating style translation from a source domain to a target domain implicitly. This allows <i>highly generalizable image generation and efficient style translation</i> through the latent space. We train our model on 4,092 T1-weighted MRIs in 3 tasks: histogram comparison, acquisition site classification, and brain tissue segmentation. Qualitative and quantitative results demonstrate the superiority of our approach, which generally outperforms several state-of-the-art methods.</p>","PeriodicalId":74092,"journal":{"name":"Machine learning in medical imaging. MLMI (Workshop)","volume":"14348 ","pages":"1-11"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10883146/pdf/","citationCount":"0","resultStr":"{\"title\":\"Structural MRI Harmonization via Disentangled Latent Energy-Based Style Translation.\",\"authors\":\"Mengqi Wu, Lintao Zhang, Pew-Thian Yap, Weili Lin, Hongtu Zhu, Mingxia Liu\",\"doi\":\"10.1007/978-3-031-45673-2_1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multi-site brain magnetic resonance imaging (MRI) has been widely used in clinical and research domains, but usually is sensitive to non-biological variations caused by site effects (<i>e.g.</i>, field strengths and scanning protocols). Several retrospective data harmonization methods have shown promising results in removing these non-biological variations at feature or whole-image level. Most existing image-level harmonization methods are implemented through generative adversarial networks, which are generally computationally expensive and generalize poorly on independent data. To this end, this paper proposes a disentangled latent energy-based style translation (DLEST) framework for image-level structural MRI harmonization. Specifically, DLEST disentangles <i>site-invariant image generation</i> and <i>site-specific style translation</i> via a latent autoencoder and an energy-based model. The autoencoder learns to encode images into low-dimensional latent space, and generates faithful images from latent codes. The energy-based model is placed in between the encoding and generation steps, facilitating style translation from a source domain to a target domain implicitly. This allows <i>highly generalizable image generation and efficient style translation</i> through the latent space. We train our model on 4,092 T1-weighted MRIs in 3 tasks: histogram comparison, acquisition site classification, and brain tissue segmentation. Qualitative and quantitative results demonstrate the superiority of our approach, which generally outperforms several state-of-the-art methods.</p>\",\"PeriodicalId\":74092,\"journal\":{\"name\":\"Machine learning in medical imaging. MLMI (Workshop)\",\"volume\":\"14348 \",\"pages\":\"1-11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10883146/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine learning in medical imaging. MLMI (Workshop)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-031-45673-2_1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning in medical imaging. MLMI (Workshop)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-45673-2_1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/15 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Structural MRI Harmonization via Disentangled Latent Energy-Based Style Translation.
Multi-site brain magnetic resonance imaging (MRI) has been widely used in clinical and research domains, but usually is sensitive to non-biological variations caused by site effects (e.g., field strengths and scanning protocols). Several retrospective data harmonization methods have shown promising results in removing these non-biological variations at feature or whole-image level. Most existing image-level harmonization methods are implemented through generative adversarial networks, which are generally computationally expensive and generalize poorly on independent data. To this end, this paper proposes a disentangled latent energy-based style translation (DLEST) framework for image-level structural MRI harmonization. Specifically, DLEST disentangles site-invariant image generation and site-specific style translation via a latent autoencoder and an energy-based model. The autoencoder learns to encode images into low-dimensional latent space, and generates faithful images from latent codes. The energy-based model is placed in between the encoding and generation steps, facilitating style translation from a source domain to a target domain implicitly. This allows highly generalizable image generation and efficient style translation through the latent space. We train our model on 4,092 T1-weighted MRIs in 3 tasks: histogram comparison, acquisition site classification, and brain tissue segmentation. Qualitative and quantitative results demonstrate the superiority of our approach, which generally outperforms several state-of-the-art methods.